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Preface

Read This First

About This Manual

This manual is a reference for programming TMS320C6000 digital signal pro-
cessor (DSP) devices.

Before you use this book, you should install your code generation and debug-
ging tools.

This book is organized in five major parts:

� Part I: Introduction includes a brief description of the ’C6000 architecture
and code development flow. It also includes a tutorial that introduces you
to the tools you will use in each phase of development and an optimization
checklist to help you achieve optimal performance from your code.

� Part II: C Code  includes C code examples and discusses optimization
methods for the code. This information can help you choose the most
appropriate optimization techniques for your code.

� Part III: Assembly Code describes the structure of assembly code. It pro-
vides examples and discusses optimizations for assembly code. It also in-
cludes a chapter on interrupt subroutines.

� Part IV: ’C64x Programming Techniques describes programming con-
siderations for the ’C64x.

� Part IV: Appendix provides a summary of feedback solutions and
memory alias disambiguation.
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Related Documentation From Texas Instruments

The following books describe the TMS320C6000 devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C6000 Assembly Language Tools User’s Guide  (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing Compiler User’s Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6000 CPU and Instruction Set Reference Guide  (literature
number SPRU189) describes the ’C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using ’C2x,
’C3x, ’C4x, ’C5x, and other TI DSPs.

TMS320C6201/C6701 Peripherals Reference Guide  (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/6701 digital signal processors. This book includes in-
formation on the internal data and program memories, the external
memory interface (EMIF), the host port interface (HPI), multichannel
buffered serial ports (McBSPs), direct memory access (DMA), enhanced
DMA (EDMA), expansion bus, clocking and phase-locked loop (PLL),
and the power-down modes.
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Trademarks

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

VelociTI is a trademark of Texas Instruments Incorporated.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.



Contents

vii

Contents

1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Introduces some features of the ’C6000 microprocessor and discusses the basic process for
creating code and understanding feedback.

1.1 TMS320C6000 Architecture 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 TMS320C6000 Pipeline 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.3 Code Development Flow to Increase Performance 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4 Understanding Feedback 1-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.4.1 Stage 1: Qualify the Loop for Software Pipelining 1-9. . . . . . . . . . . . . . . . . . . . . . . . 
1.4.2 Stage 2: Collect loop resource and dependency graph information 1-11. . . . . . . . 
1.4.3 Stage 3: Software pipeline the loop 1-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Compiler Optimization Tutorial 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Uses example code to walk you through the code development flow for the TMS320C6000.

2.1 Introduction: Simple C Tuning 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1.1 Project Familiarization 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1.2 Getting Ready for Lesson 1 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Lesson 1: Loop Carry Path From Memory Pointers 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3 Lesson 2: Balancing Resources With Dual-Data Paths 2-12. . . . . . . . . . . . . . . . . . . . . . . . . 
2.4 Lesson 3: Packed Data Optimization of Memory Bandwidth 2-18. . . . . . . . . . . . . . . . . . . . . 
2.5 Lesson 4: Program Level Optimization 2-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6 Lesson 5: Writing Linear Assembly 2-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 Optimizing C/C++ Code 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Explains how to maximize C performance by using compiler options, intrinsics, and code trans-
formations.

3.1 Writing C/C++ Code 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1.1 Tips on Data Types 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1.2 Analyzing C Code Performance 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 Compiling C/C++ Code 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.1 Compiler Options 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.2 Memory Dependencies 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 Profiling Your Code 3-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.1 Using the Standalone Simulator (load6x) to Profile 3-15. . . . . . . . . . . . . . . . . . . . . . 
3.3.2 Profiling in Code Composer Studio 3-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

viii  

3.4 Refining C/C++ Code 3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.1 Using Intrinsics 3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.2 Using Word Access for Short Data 3-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.3 Software Pipelining 3-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Linking Issues 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Explains linker messages and how to use RTS functions.

4.1 How to Use Linker Error Messages 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1.1 Executable Flag 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 How to Save On-Chip Memory by Placing RTS Off-Chip 4-5. . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.1 How to Compile 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.2 Must #include Header Files 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.3 RTS Data 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.4 How to Link 4-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.5 Example Compiler Invocation 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.6 Header File Details 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.7 Changing RTS Data to near 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 Structure of Assembly Code 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the structure of the assembly code, including labels, conditions, instructions, func-
tional units, operands, and comments.

5.1 Labels 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2 Parallel Bars 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3 Conditions 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4 Instructions 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.5 Functional Units 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6 Operands 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.7 Comments 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Optimizing Assembly Code via Linear Assembly 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes methods that help you develop more efficient assembly language programs.

6.1 Assembly Code 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2 Assembly Optimizer Options and Directives 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2.1 The –0n Option 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.2 The –mt Option and the .no_mdep Directive 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.3 The .mdep Directive 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.4 The .mptr Directive 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.5 The .trip Directive 6-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Writing Parallel Code 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.1 Dot Product C Code 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.2 Translating C Code to Linear Assembly 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.3 Linear Assembly Resource Allocation 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.4 Drawing a Dependency Graph 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.5 Nonparallel Versus Parallel Assembly Code 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.6 Comparing Performance 6-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

ixContents

6.4 Using Word Access for Short Data and Doubleword Access for Floating-Point Data 6-19
6.4.1 Unrolled Dot Product C Code 6-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.2 Translating C Code to Linear Assembly 6-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.3 Drawing a Dependency Graph 6-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.4 Linear Assembly Resource Allocation 6-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.5 Final Assembly 6-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.4.6 Comparing Performance 6-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.5 Software Pipelining 6-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.5.1 Modulo Iteration Interval Scheduling 6-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.5.2 Using the Assembly Optimizer to Create Optimized Loops 6-39. . . . . . . . . . . . . . . 
6.5.3 Final Assembly 6-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.5.4 Comparing Performance 6-57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.6 Modulo Scheduling of Multicycle Loops 6-58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.6.1 Weighted Vector Sum C Code 6-58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.6.2 Translating C Code to Linear Assembly 6-58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.6.3 Determining the Minimum Iteration Interval 6-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.6.4 Drawing a Dependency Graph 6-61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.6.5 Linear Assembly Resource Allocation 6-62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.6.6 Modulo Iteration Interval Scheduling 6-62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.6.7 Using the Assembly Optimizer for the Weighted Vector Sum 6-73. . . . . . . . . . . . . 
6.6.8 Final Assembly 6-74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.7 Loop Carry Paths 6-77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.7.1 IIR Filter C Code 6-77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.7.2 Translating C Code to Linear Assembly (Inner Loop) 6-78. . . . . . . . . . . . . . . . . . . . 
6.7.3 Drawing a Dependency Graph 6-79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.7.4 Determining the Minimum Iteration Interval 6-80. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.7.5 Linear Assembly Resource Allocation 6-82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.7.6 Modulo Iteration Interval Scheduling 6-83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.7.7 Using the Assembly Optimizer for the IIR Filter 6-84. . . . . . . . . . . . . . . . . . . . . . . . . 
6.7.8 Final Assembly 6-85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.8 If-Then-Else Statements in a Loop 6-86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8.1 If-Then-Else C Code 6-86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8.2 Translating C Code to Linear Assembly 6-87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8.3 Drawing a Dependency Graph 6-88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8.4 Determining the Minimum Iteration Interval 6-89. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8.5 Linear Assembly Resource Allocation 6-90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8.6 Final Assembly 6-91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.8.7 Comparing Performance 6-92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.9 Loop Unrolling 6-94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.9.1 Unrolled If-Then-Else C Code 6-94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.9.2 Translating C Code to Linear Assembly 6-95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.9.3 Drawing a Dependency Graph 6-96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.9.4 Determining the Minimum Iteration Interval 6-97. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.9.5 Linear Assembly Resource Allocation 6-97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.9.6 Final Assembly 6-99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.9.7 Comparing Performance 6-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

x  

6.10 Live-Too-Long Issues 6-101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.10.1 C Code With Live-Too-Long Problem 6-101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.10.2 Translating C Code to Linear Assembly 6-102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.10.3 Drawing a Dependency Graph 6-102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.10.4 Determining the Minimum Iteration Interval 6-104. . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.10.5 Linear Assembly Resource Allocation 6-106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.10.6 Final Assembly With Move Instructions 6-108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.11 Redundant Load Elimination 6-110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.11.1 FIR Filter C Code 6-110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.11.2 Translating C Code to Linear Assembly 6-112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.11.3 Drawing a Dependency Graph 6-113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.11.4 Determining the Minimum Iteration Interval 6-114. . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.11.5 Linear Assembly Resource Allocation 6-114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.11.6 Final Assembly 6-115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.12 Memory Banks 6-118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.1 FIR Filter Inner Loop 6-120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.2 Unrolled FIR Filter C Code 6-122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.3 Translating C Code to Linear Assembly 6-123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.4 Drawing a Dependency Graph 6-124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.5 Linear Assembly for Unrolled FIR Inner Loop With .mptr Directive 6-125. . . . . . . . 
6.12.6 Linear Assembly Resource Allocation 6-127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.7 Determining the Minimum Iteration Interval 6-128. . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.8 Final Assembly 6-128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.12.9 Comparing Performance 6-128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.13 Software Pipelining the Outer Loop 6-131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.13.1 Unrolled FIR Filter C Code 6-131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.13.2 Making the Outer Loop Parallel With the Inner Loop Epilog and Prolog 6-132. . . 
6.13.3 Final Assembly 6-132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.13.4 Comparing Performance 6-135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.14 Outer Loop Conditionally Executed With Inner Loop 6-136. . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.14.1 Unrolled FIR Filter C Code 6-136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.14.2 Translating C Code to Linear Assembly (Inner Loop) 6-137. . . . . . . . . . . . . . . . . . . 
6.14.3 Translating C Code to Linear Assembly (Outer Loop) 6-138. . . . . . . . . . . . . . . . . . . 
6.14.4 Unrolled FIR Filter C Code 6-138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.14.5 Translating C Code to Linear Assembly (Inner Loop) 6-140. . . . . . . . . . . . . . . . . . . 
6.14.6 Translating C Code to Linear Assembly (Inner Loop and Outer Loop) 6-142. . . . 
6.14.7 Determining the Minimum Iteration Interval 6-146. . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.14.8 Final Assembly 6-146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.14.9 Comparing Performance 6-149. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xiContents

7 Interrupts 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes interrupts from a software programming point of view.

7.1 Overview of Interrupts 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2 Single Assignment vs. Multiple Assignment 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.3 Interruptible Loops 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.4 Interruptible Code Generation 7-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4.1 Level 0 - Specified Code is Guaranteed to Not Be Interrupted 7-6. . . . . . . . . . . . . 
7.4.2 Level 1 – Specified Code Interruptible at All Times 7-7. . . . . . . . . . . . . . . . . . . . . . . 
7.4.3 Level 2 – Specified Code Interruptible Within Threshold Cycles 7-7. . . . . . . . . . . . 
7.4.4 Getting the Most Performance Out of Interruptible Code 7-8. . . . . . . . . . . . . . . . . . 

7.5 Interrupt Subroutines 7-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.5.1 ISR with the C/C++ Compiler 7-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.5.2 ISR with Hand-Coded Assembly 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.5.3 Nested Interrupts 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8 ’C64x Programming Considerations 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes programming considerations for the ’C64x.

8.1 Overview of ’C64x Architectural Enhancements 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.1.1 Improved Scheduling Flexibility 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.1.2 Greater Memory Bandwidth 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.1.3 Support for Packed Data Types 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.1.4 Non-aligned Memory Accesses 8-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.1.5 Additional Specialized Instructions 8-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2 Packed-Data Processing on the ’C64x 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.1 Introduction to Packed Data Processing Techniques 8-4. . . . . . . . . . . . . . . . . . . . . 
8.2.2 Packed Data Types 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.3 Storing Multiple Elements in a Single Register 8-5. . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.4 Packing and Unpacking Data 8-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.5 Optimizing for Packed Data Processing 8-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.6 Vectorizing With Packed Data Processing 8-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.7 Combining Multiple Operations in a Single Instruction 8-28. . . . . . . . . . . . . . . . . . . 
8.2.8 Non-Aligned Memory Accesses 8-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.9 Performing Conditional Operations with Packed Data 8-40. . . . . . . . . . . . . . . . . . . 

8.3 Linear Assembly Considerations 8-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.3.1 Using BDEC and BPOS in Linear Assembly 8-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A FeedbackSolutions A-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.1 Loop Disqualification Messages A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.2 Pipeline Failure Messages A-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.3 Investigative Feedback A-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xii  

B Memory Alias Disambiguation B-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.1 Overview B-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.2 Background B-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B.2.1 Data Dependence Between Instructions B-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.2.2 Dependence Graphs B-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.2.3 Data Dependence in Loops B-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.2.4 How Dependence Affects Instruction Scheduling B-9. . . . . . . . . . . . . . . . . . . . . . . . 
B.2.5 Memory Alias Disambiguation Defined B-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B.3 Tools Solution B-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.3.1 Overview of the Assembly Optimizer Solution B-12. . . . . . . . . . . . . . . . . . . . . . . . . . 
B.3.2 Default Presumption is Pessimistic B-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.3.3 Change the Default Presumption to Optimistic B-14. . . . . . . . . . . . . . . . . . . . . . . . . . 
B.3.4 Using .mdep to Mark Aliases B-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B.4 Examples of Memory Alias Disambiguation B-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.4.1 How .mdep Affects Instruction Scheduling B-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.4.2 Handling Indexed Addressing Mode B-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.4.3 Peripherals Access Example B-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B.5 C/C++ Compiler and Alias Disambiguation B-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B.6 Memory Alias Disambiguation versus Memory Bank Conflict Detection B-28. . . . . . . . . . . 
B.7 Summary B-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

xiiiContents

Figures

3–1. Dependency Graph for Vector Sum #1 3-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2. Dependency Graph for Vector Sum #2 3-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–3. Software-Pipelined Loop 3-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–1. Labels in Assembly Code 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2. Parallel Bars in Assembly Code 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–3. Conditions in Assembly Code 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–4. Instructions in Assembly Code 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–5. TMS320C6x Functional Units 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–6. Units in the Assembly Code 5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–7. Operands in the Assembly Code 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–8. Operands in Instructions 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–9. Comments in Assembly Code 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–1. Dependency Graph of Fixed-Point Dot Product 6-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2. Dependency Graph of Floating-Point Dot Product 6-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–3. Dependency Graph of Fixed-Point Dot Product with Parallel Assembly 6-15. . . . . . . . . . . . . . 
6–4. Dependency Graph of Floating-Point Dot Product with Parallel Assembly 6-17. . . . . . . . . . . . 
6–5. Dependency Graph of Fixed-Point Dot Product With LDW 6-22. . . . . . . . . . . . . . . . . . . . . . . . . 
6–6. Dependency Graph of Floating-Point Dot Product With LDDW 6-23. . . . . . . . . . . . . . . . . . . . . 
6–7. Dependency Graph of Fixed-Point Dot Product With LDW 

(Showing Functional Units) 6-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–8. Dependency Graph of Floating-Point Dot Product With LDDW 

(Showing Functional Units) 6-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–9. Dependency Graph of Fixed-Point Dot Product With LDW 

(Showing Functional Units) 6-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–10. Dependency Graph of Floating-Point Dot Product With LDDW 

(Showing Functional Units) 6-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–11. Dependency Graph of Weighted Vector Sum 6-61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–12. Dependency Graph of Weighted Vector Sum (Showing Resource Conflict) 6-65. . . . . . . . . . 
6–13. Dependency Graph of Weighted Vector Sum (With Resource Conflict Resolved) 6-68. . . . . 
6–14. Dependency Graph of Weighted Vector Sum (Scheduling ci +1) 6-70. . . . . . . . . . . . . . . . . . . . 
6–15. Dependency Graph of IIR Filter 6-79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–16. Dependency Graph of IIR Filter (With Smaller Loop Carry) 6-81. . . . . . . . . . . . . . . . . . . . . . . . 
6–17. Dependency Graph of If-Then-Else Code 6-88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–18. Dependency Graph of If-Then-Else Code (Unrolled) 6-96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–19. Dependency Graph of Live-Too-Long Code 6-103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–20. Dependency Graph of Live-Too-Long Code (Split-Join Path Resolved) 6-106. . . . . . . . . . . . . 
6–21. Dependency Graph of FIR Filter (With Redundant Load Elimination) 6-113. . . . . . . . . . . . . . . 



Figures

xiv  

6–22. 4-Bank Interleaved Memory 6-118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–23. 4-Bank Interleaved Memory With Two Memory Blocks 6-119. . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–24. Dependency Graph of FIR Filter 

(With Even and Odd Elements of Each Array on Same Loop Cycle) 6-121. . . . . . . . . . . . . . . 
6–25. Dependency Graph of FIR Filter (With No Memory Hits) 6-124. . . . . . . . . . . . . . . . . . . . . . . . . . 
8–1. Four Bytes Packed Into a Single General Purpose Register. 8-5. . . . . . . . . . . . . . . . . . . . . . . . 
8–2. Two Half–Words Packed Into a Single General Purpose Register. 8-6. . . . . . . . . . . . . . . . . . . 
8–3. Graphical Representation of _packXX2 Intrinsics 8-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–4. Graphical Representation of _spack2 8-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–5. Graphical Representation of 8–bit Packs (_packX4 and _spacku4) 8-11. . . . . . . . . . . . . . . . . 
8–6. Graphical Representation of 8–bit Unpacks (_unpkXu4) 8-12. . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–7. Graphical Representation of (_shlmb, _shrmb, and _swap4) 8-13. . . . . . . . . . . . . . . . . . . . . . . 
8–8. Graphical Representation of a Simple Vector Operation 8-14. . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–9. Graphical Representation of Dot Product 8-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–10. Graphical Representation of a Single Iteration of Vector Complex Multiply. 8-17. . . . . . . . . . . 
8–11. Array Access in Vector Sum by LDDW 8-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–12. Array Access in Vector Sum by STDW 8-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–13. Vector Addition 8-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–14. Graphical Representation of a Single Iteration of Vector Multiply. 8-22. . . . . . . . . . . . . . . . . . . 
8–15. Packed 16�16 Multiplies Using _mpy2 8-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–16. Fine Tuning Vector Multiply (shift > 16) 8-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–17. Fine Tuning Vector Multiply (shift < 16) 8-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–18. Graphical Representation of the _dotp2 Intrinsic c = _dotp2(b, a) 8-30. . . . . . . . . . . . . . . . . . . 
8–19. The _dotpn2 Intrinsic Performing Real Portion of Complex Multiply. 8-34. . . . . . . . . . . . . . . . . 
8–20. _packlh2 and _dotp2 Working Together. 8-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–21. Graphical Illustration of _cmpXX2 Intrinsics 8-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–22. Graphical Illustration of _cmpXX4 Intrinsics 8-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–23. Graphical Illustration of _xpnd2 Intrinsic 8-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–24. Graphical Illustration of _xpnd4 Intrinsic 8-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

xvContents

Tables

1–1. Code Development Steps 1-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–1. Status Update: Tutorial example lesson_c lesson1_c 2-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–2. Status Update: Tutorial example lesson_c lesson1_c lesson2_c 2-17. . . . . . . . . . . . . . . . . . . . 
2–3. Status Update: Tutorial example lesson_c lesson1_c lesson2_c lesson3_c 2-22. . . . . . . . . . 
2–4. Status Update: Tutorial example lesson_c lesson1_c lesson2_c lesson3_c 2-24. . . . . . . . . . 
3–1. Compiler Options to Avoid on Performance Critical Code 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2. Compiler Options for Performance 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–3. Compiler Options for Control Code 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–4. Compiler Options for Information 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–5. TMS320C6000 C/C++ Compiler Intrinsics 3-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2. Command Line Options for RTS Calls 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–3. How _FAR_RTS is Defined in Linkage.h With –mr 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–1. Selected TMS320C6x Directives 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2. Functional Units and Operations Performed  5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–1. Comparison of Nonparallel and Parallel Assembly Code for 

Fixed-Point Dot Product 6-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2. Comparison of Nonparallel and Parallel Assembly Code for 

Floating-Point Dot Product 6-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–3. Comparison of Fixed-Point Dot Product Code With Use of LDW 6-28. . . . . . . . . . . . . . . . . . . . 
6–4. Comparison of Floating-Point Dot Product Code With Use of LDDW 6-28. . . . . . . . . . . . . . . . 
6–5. Modulo Iteration Interval Scheduling Table for Fixed-Point Dot Product 

(Before Software Pipelining) 6-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–6. Modulo Iteration Interval Scheduling Table for Floating-Point Dot Product 

(Before Software Pipelining) 6-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–7. Modulo Iteration Interval Table for Fixed-Point Dot Product 

(After Software Pipelining) 6-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–8. Modulo Iteration Interval Table for Floating-Point Dot Product 

(After Software Pipelining) 6-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–9. Software Pipeline Accumulation Staggered Results Due to Three-Cycle Delay 6-38. . . . . . 
6–10. Comparison of Fixed-Point Dot Product Code Examples 6-57. . . . . . . . . . . . . . . . . . . . . . . . . . 
6–11. Comparison of Floating-Point Dot Product Code Examples 6-57. . . . . . . . . . . . . . . . . . . . . . . . 
6–12. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop) 6-64. . . . . . . . . . . . 
6–13. Modulo Iteration Interval Table for Weighted Vector Sum With SHR Instructions 6-66. . . . . . 
6–14. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop) 6-69. . . . . . . . . . . . 
6–15. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop) 6-72. . . . . . . . . . . . 
6–16. Resource Table for IIR Filter 6-80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–17. Modulo Iteration Interval Table for IIR (4-Cycle Loop) 6-83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–18. Resource Table for If-Then-Else Code 6-89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

xvi  

6–19. Comparison of If-Then-Else Code Examples 6-93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–20. Resource Table for Unrolled If-Then-Else Code 6-97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–21. Comparison of If-Then-Else Code Examples 6-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–22. Resource Table for Live-Too-Long Code 6-104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–23. Resource Table for FIR Filter Code 6-114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–24. Resource Table for FIR Filter Code 6-128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–25. Comparison of FIR Filter Code 6-128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–26. Comparison of FIR Filter Code 6-135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–27. Resource Table for FIR Filter Code 6-146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–28. Comparison of FIR Filter Code 6-149. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–1.  Packed data types 8-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–2.  Supported Operations on Packed Data Types 8-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–3.  Instructions for Manipulating Packed Data Types 8-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–4.  Unpacking Packed 16-bit Quantities to 32-bit Values 8-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–5. Intrinsics Which Combine Multiple Operations in one Instruction 8-28. . . . . . . . . . . . . . . . . . . . 
8–6. Comparison Between Aligned and Non–Aligned Memory Accesses 8-37. . . . . . . . . . . . . . . . . 
B–1. Dependence Table B-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Examples

xviiContents

Examples

1–1. Compiler and/or Assembly Optimizer Feedback 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1–2. Stage 1 Feedback 1-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1–3. Stage 2 Feedback 1-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1–4. Stage 3 Feedback 1-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–1. Vector Summation of Two Weighted Vectors 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–2. lesson_c.c 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–3. Feedback From lesson_c.asm 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–4. lesson_c.asm 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–5. lesson1_c.c 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–6. lesson1_c.asm 2-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–7. lesson1_c.asm 2-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–8. lesson2_c.c 2-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–9. lesson2_c.asm 2-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–10. lesson2_c.asm 2-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–11. lesson3_c.c 2-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–12. lesson3_c.asm 2-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–13. Profile Statistics 2-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–14. Using the iircas4 Function in C 2-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–15. Software Pipelining Feedback From the iircas4 C Code 2-27. . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–16. Rewriting the iircas4 ( ) Function in Linear Assembly 2-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–17. Software Pipeline Feedback from Linear Assembly 2-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–1. Basic Vector Sum 3-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2. Vector Sum With const Keywords 3-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–3. Compiler Output for Vector Sum Code 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–4. Incorrect Use of the const Keyword 3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–5. Use of the Restrict Type Qualifier With Pointers 3-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–6. Use of the Restrict Type Qualifier With Arrays 3-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–7. Including the clock( ) Function 3-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–8. Saturated Add Without Intrinsics 3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–9. Saturated Add With Intrinsics 3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–10. Vector Sum With const Keywords, _nassert, Word Reads 3-27. . . . . . . . . . . . . . . . . . . . . . . . . 
3–11. Vector Sum With const Keywords, MUST_ITERATE pragma, 

and Word Reads (Generic Version) 3-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–12. Dot Product Using Intrinsics 3-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–13. FIR Filter—Original Form 3-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–14. FIR Filter— Optimized Form 3-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Examples

xviii  

3–15. Basic Float Dot Product 3-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–16. Float Dot Product Using Intrinsics 3-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–17. Float Dot Product With Peak Performance 3-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–18. Using the Compiler to Generate a Dot Product With Word Accesses 3-35. . . . . . . . . . . . . . . . 
3–19. Using the _nassert() Intrinsic to Generate Word Accesses for Vector Sum 3-36. . . . . . . . . . . 
3–20. Using _nassert() Intrinsic to Generate Word Accesses for FIR Filter 3-37. . . . . . . . . . . . . . . . 
3–21. Compiler Output From Example 3–20 3-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–22. Compiler Output From Example 3–14 3-38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–23. Compiler Output From Example 3–13 3-38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–24. Automatic Use of Word Accesses Without the _nassert Intrinsic 3-39. . . . . . . . . . . . . . . . . . . . 
3–25. Trip Counters 3-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–26. Vector Sum With Three Memory Operations 3-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–27. Word-Aligned Vector Sum 3-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–28. Vector Sum Using const Keywords, MUST_ITERATE pragma, 

Word Reads, and Loop Unrolling 3-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–29. FIR_Type2—Original Form 3-47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–30. FIR_Type2—Inner Loop Completely Unrolled 3-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–31. Vector Sum 3-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–32. Use of If Statements in Float Collision Detection (Original Code) 3-51. . . . . . . . . . . . . . . . . . . 
3–33. Use of If Statements in Float Collision Detection (Modified Code) 3-52. . . . . . . . . . . . . . . . . . . 
6–1. Linear Assembly Block Copy 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2. Block copy With .mdep 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–3. Linear Assembly Dot Product 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–4. Linear Assembly Dot Product With .mptr 6-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–5. Fixed-Point Dot Product C Code 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–6. Floating-Point Dot Product C Code 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–7. List of Assembly Instructions for Fixed-Point Dot Product 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . 
6–8. List of Assembly Instructions for Floating-Point Dot Product 6-10. . . . . . . . . . . . . . . . . . . . . . . 
6–9. Nonparallel Assembly Code for Fixed-Point Dot Product 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . 
6–10. Parallel Assembly Code for Fixed-Point Dot Product 6-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–11. Nonparallel Assembly Code for Floating-Point Dot Product 6-16. . . . . . . . . . . . . . . . . . . . . . . . 
6–12. Parallel Assembly Code for Floating-Point Dot Product 6-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–13. Fixed-Point Dot Product C Code (Unrolled) 6-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–14. Floating-Point Dot Product C Code (Unrolled) 6-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–15. Linear Assembly for Fixed-Point Dot Product Inner Loop with LDW 6-20. . . . . . . . . . . . . . . . . 
6–16. Linear Assembly for Floating-Point Dot Product Inner Loop with LDDW 6-21. . . . . . . . . . . . . 
6–17. Linear Assembly for Fixed-Point Dot Product Inner Loop With LDW 

(With Allocated Resources) 6-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–18. Linear Assembly for Floating-Point Dot Product Inner Loop With LDDW

(With Allocated Resources) 6-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–19. Assembly Code for Fixed-Point Dot Product With LDW 

(Before Software Pipelining) 6-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–20. Assembly Code for Floating-Point Dot Product With LDDW 

(Before Software Pipelining) 6-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–21. Linear Assembly for Fixed-Point Dot Product Inner Loop

(With Conditional SUB Instruction) 6-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Examples

xixContents

6–22. Linear Assembly for Floating-Point Dot Product Inner Loop
(With Conditional SUB Instruction) 6-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–23. Pseudo-Code for Single-Cycle Accumulator With ADDSP 6-37. . . . . . . . . . . . . . . . . . . . . . . . . 
6–24. Linear Assembly for Full Fixed-Point Dot Product 6-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–25. Linear Assembly for Full Floating-Point Dot Product 6-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–26. Assembly Code for Fixed-Point Dot Product (Software Pipelined) 6-42. . . . . . . . . . . . . . . . . . 
6–27. Assembly Code for Floating-Point Dot Product (Software Pipelined) 6-43. . . . . . . . . . . . . . . . 
6–28. Assembly Code for Fixed-Point Dot Product 

(Software Pipelined With No Extraneous Loads) 6-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–29. Assembly Code for Floating-Point Dot Product 

(Software Pipelined With No Extraneous Loads) 6-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–30. Assembly Code for Fixed-Point Dot Product 

(Software Pipelined With Removal of Prolog and Epilog) 6-52. . . . . . . . . . . . . . . . . . . . . . . . . . 
6–31. Assembly Code for Floating-Point Dot Product 

(Software Pipelined With Removal of Prolog and Epilog) 6-53. . . . . . . . . . . . . . . . . . . . . . . . . . 
6–32. Assembly Code for Fixed-Point Dot Product 

(Software Pipelined With Smallest Code Size) 6-55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–33. Assembly Code for Floating-Point Dot Product 

(Software Pipelined With Smallest Code Size) 6-56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–34. Weighted Vector Sum C Code 6-58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–35. Linear Assembly for Weighted Vector Sum Inner Loop 6-58. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–36. Weighted Vector Sum C Code (Unrolled) 6-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–37. Linear Assembly for Weighted Vector Sum Using LDW 6-60. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–38. Linear Assembly for Weighted Vector Sum With Resources Allocated 6-62. . . . . . . . . . . . . . . 
6–39. Linear Assembly for Weighted Vector Sum 6-73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–40. Assembly Code for Weighted Vector Sum 6-75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–41. IIR Filter C Code 6-77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–42. Linear Assembly for IIR Inner Loop 6-78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–43. Linear Assembly for IIR Inner Loop With Reduced Loop Carry Path 6-82. . . . . . . . . . . . . . . . . 
6–44. Linear Assembly for IIR Inner Loop (With Allocated Resources) 6-82. . . . . . . . . . . . . . . . . . . . 
6–45. Linear Assembly for IIR Filter 6-84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–46. Assembly Code for IIR Filter 6-85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–47. If-Then-Else C Code 6-86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–48. Linear Assembly for If-Then-Else Inner Loop 6-87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–49. Linear Assembly for Full If-Then-Else Code 6-90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–50. Assembly Code for If-Then-Else 6-91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–51. Assembly Code for If-Then-Else With Loop Count Greater Than 3 6-92. . . . . . . . . . . . . . . . . . 
6–52. If-Then-Else C Code (Unrolled) 6-94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–53. Linear Assembly for Unrolled If-Then-Else Inner Loop 6-95. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–54. Linear Assembly for Full Unrolled If-Then-Else Code 6-98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–55. Assembly Code for Unrolled If-Then-Else 6-99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–56. Live-Too-Long C Code 6-101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–57. Linear Assembly for Live-Too-Long Inner Loop 6-102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–58. Linear Assembly for Full Live-Too-Long Code 6-107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–59. Assembly Code for Live-Too-Long With Move Instructions 6-108. . . . . . . . . . . . . . . . . . . . . . . 



Examples

xx  

6–60. FIR Filter C Code 6-110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–61. FIR Filter C Code With Redundant Load Elimination 6-111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–62. Linear Assembly for FIR Inner Loop 6-112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–63. Linear Assembly for Full FIR Code 6-114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–64. Final Assembly Code for FIR Filter With Redundant Load Elimination 6-116. . . . . . . . . . . . . . 
6–65. Final Assembly Code for Inner Loop of FIR Filter 6-120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–66. FIR Filter C Code (Unrolled) 6-122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–67. Linear Assembly for Unrolled FIR Inner Loop 6-123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–68. Linear Assembly for Full Unrolled FIR Filter 6-125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–69. Final Assembly Code for FIR Filter With Redundant Load Elimination

and No Memory Hits 6-129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–70. Unrolled FIR Filter C Code 6-131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–71. Final Assembly Code for FIR Filter With Redundant Load Elimination

and No Memory Hits With Outer Loop Software-Pipelined 6-133. . . . . . . . . . . . . . . . . . . . . . . . 
6–72. Unrolled FIR Filter C Code 6-136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–73. Linear Assembly for Unrolled FIR Inner Loop 6-137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–74. Linear Assembly for FIR Outer Loop 6-138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–75. Unrolled FIR Filter C Code 6-139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–76. Linear Assembly for FIR With Outer Loop 

Conditionally Executed With Inner Loop 6-141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–77. Linear Assembly for FIR With Outer Loop 

Conditionally Executed With Inner Loop (With Functional Units) 6-143. . . . . . . . . . . . . . . . . . . 
6–78. Final Assembly Code for FIR Filter 6-147. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–1. Code With Multiple Assignment of A1 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–2. Code Using Single Assignment 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–3. Dot Product With _nassert Guaranteeing Minimum Trip Count 7-8. . . . . . . . . . . . . . . . . . . . . . 
7–4. Dot Product With _nassert Guaranteeing Trip Count Range 7-9. . . . . . . . . . . . . . . . . . . . . . . . 
7–5. Dot Product With MUST_ITERATE Pragma Guaranteeing 

Trip Count Range and Factor of 2 7-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–6. Dot Product With MUST_ITERATE Pragma Guaranteeing 

Trip Count Range and Factor of 4 7-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–7. Hand-Coded Assembly ISR 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–8. Hand-Coded Assembly ISR Allowing Nesting of Interrupts 7-13. . . . . . . . . . . . . . . . . . . . . . . . . 
8–1. Vector Sum 8-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–2. Vector Multiply 8-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–3. Dot Product 8-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–4. Vector Complex Multiply 8-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–5. Vectorization: Using LDDW and STDW in Vector Sum 8-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–6. Vector Addition (Complete) 8-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–7. Using LDDW and STDW in Vector Multiply 8-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–8. Using _mpy2() and _pack2() to Perform the Vector Multiply 8-24. . . . . . . . . . . . . . . . . . . . . . . . 
8–9. Vectorized Form of the Dot Product Kernel 8-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–10. Vectorized Form of the Dot Product Kernel 8-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–11. Final Assembly Code for Dot–Product Kernel’s Inner Loop 8-31. . . . . . . . . . . . . . . . . . . . . . . . 
8–12. Vectorized form of the Vector Complex Multiply Kernel 8-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Examples

xxiContents

8–13. Vectorized form of the Vector Complex Multiply 8-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–14. Non–aligned Memory Access With _mem4 and _memd8 8-38. . . . . . . . . . . . . . . . . . . . . . . . . . 
8–15. Vector Sum Modified to use Non–Aligned Memory Accesses 8-38. . . . . . . . . . . . . . . . . . . . . . 
8–16. Clear Below Threshold Kernel 8-43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–17. Clear Below Threshold Kernel, Using _cmpgtu4 and _xpnd4 Intrinsics 8-44. . . . . . . . . . . . . . 
8–18. Loop Trip Count in C 8-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–19. Loop Trip Count in Linear Assembly without BDEC 8-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–20. Loop Trip Count Using BDEC 8-47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–21. Loop Tip Count Using BDEC With Extra Loop Iterations 8-47. . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–22. Using the .call Directive in Linear Assembly 8-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8–23. Compiler Output Using ADDKPC 8-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



1-1

Introduction

This chapter introduces some features of the ’C6000 microprocessor and dis-
cusses the basic process for creating code and understanding feedback. Any
reference to ’C6000 pertains to the ’C62x (fixed-point), ’C64x (fixed-point), and
the ’C67x (floating-point) devices. All techniques are applicable to each de-
vice, even though most of the examples shown are fixed-point specific.
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1.1 TMS320C6000 Architecture

The ’C62x is a fixed-point digital signal processor (DSP) and is the first DSP
to use the VelociTI� architecture. VelociTI is a high-performance, advanced
very-long-instruction-word (VLIW) architecture, making it an excellent choice
for multichannel, multifunction, and performance-driven applications.

The ’C67x is a floating-point DSP with the same features. It is the second DSP
to use the VelociTI� architecture.

The ’C64x is a fixed-point DSP with the same features. It is the third DSP to
use the VelociTI� architecture.

The ’C6000 DSPs are based on the ’C6000 CPU, which consists of:

� Program fetch unit
� Instruction dispatch unit
� Instruction decode unit
� Two data paths, each with four functional units
� Thirty-two 32-bit registers (’C62x and ’C67x)
� Sixty-four 32-bit registers (’C64x)
� Control registers
� Control logic
� Test, emulation, and interrupt logic

1.2 TMS320C6000 Pipeline

The ’C6000 pipeline has several features that provide optimum performance,
low cost, and simple programming.

� Increased pipelining eliminates traditional architectural bottlenecks in pro-
gram fetch, data access, and multiply operations.

� Pipeline control is simplified by eliminating pipeline locks.

� The pipeline can dispatch eight parallel instructions every cycle.

� Parallel instructions proceed simultaneously through the same pipeline
phases.

TMS320C6000 Architecture / TMS320C6000 Pipeline
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1.3 Code Development Flow to Increase Performance

Traditional development flows in the DSP industry have involved validating a
C model for correctness on a host PC or Unix workstation and then painstak-
ingly porting that C code to hand coded DSP assembly language. This is both
time consuming and error prone, not to mention the difficulties that can arise
from maintaining the code over several projects.

The recommended code development flow involves utilizing the ’C6000 code
generation tools to aid in your optimization rather than forcing you to code by
hand in assembly. The advantages are obvious. Let the compiler do all the la-
borious work of instruction selection, parallelizing, pipelining, and register al-
location, and you focus on getting the product to market quickly. Because of
these features, maintaining the code becomes easy, as everything resides in
a C framework that is simple to maintain, support and upgrade.

The recommended code development flow for the ’C6000 involves the phases
described below. The tutorial section of the Programmer’s Guide focuses on
phases 1 – 3, and will show you when to go to the tuning stage of phase 3. What
you learn is the importance of giving the compiler enough information to fully
maximize its potential. What’s even better is that this compiler gives you direct
feedback on all your high MIPS areas (loops). Based on this feedback, there
are some very simple steps you can take to pass more, or better, information
to the compiler allowing you to quickly begin maximizing compiler peformance.
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You can achieve the best performance from your ’C6000 code if you follow this
code development flow when you are writing and debugging your code:
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The following lists the phases in the 3-step software development flow shown
on page 1-3, and the goal for each phase:

Phase Goal

1 You can develop your C code for phase 1 without any knowledge of
the ’C6000. Use the ’C6000 profiling tools that are described in the
Code Composer Studio User’s Guide to identify any inefficient areas
that you might have in your C code. To improve the performance of
your code, proceed to phase 2.

2 Use the intrinsics, shell options, and techniques that are described
in this book to improve your C code. Use the ’C6000 profiling tools
to check its performance. If your code is still not as efficient as you
would like it to be, proceed to phase 3.

3 Extract the time-critical areas from your C code and rewrite the code
in linear assembly. You can use the assembly optimizer to optimize
this code.

Because most of the millions of instructions per second (MIPS) in DSP applica-
tions occur in tight loops, it is important for the ’C6000 code generation tools
to make maximal use of all the hardware resources in important loops. Fortu-
nately, loops inherently have more parallelism than non-looping code because
there are multiple iterations of the same code executing with limited depen-
dencies between each iteration. Through a technique called software pipelin-
ing, the ’C6000 code generation tools use the multiple resources of the Veloci-
TI architecture efficiently and obtain very high performance.

This chapter shows the code development flow recommended to achieve the
highest performance on loops and provides a feedback list that can be used
to optimize loops with references to more detailed documentation.
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Table 1–1 describes the recommended code development flow for developing
code which achieves the highest performance on loops.

Table 1–1. Code Development Steps

Step Description

1 Compile and profile native C/C++ code

� Validates original C/C++ code

� Determines which loops are most important in terms of MIPS require-
ments

2 Add const declarations, loop, memory bank, and data alignment information.

� Reduces potential pointer aliasing problems

� Allows loops with indeterminate iteration counts to execute epilogs

� Uses pragmas to pass count information to the compiler

� Uses memory bank pragmas and _nassert intrinsic to pass memory
bank and alignment information to the compiler.

3 Optimize C code using other ’C6000 intrinsics and other methods

� Facilitates use of certain ’C6000 instructions not easily represented in
C

� Optimizes data flow bandwidth (uses word access for short (’C62x,
’C64x, and ’C67x) data, and double word access for word (’C64x, and
’C67x) data).

4a Write linear assembly

� Allows control in determining exact ’C6000 instructions to be used

� Provides flexibility of hand-coded assembly without worry of pipelining,
parallelism, or register allocation

� Can pass memory bank information to the tools

� Uses .trip directive to convey loop count information

4b Add partitioning information to the linear assembly

� Can improve partitioning of loops when necessary

� Can avoid bottlenecks of certain hardware resources

Code size considerations

� Can trade small performance degradation for smaller code on loops

� Can significantly reduce code size for control code

When you achieve the desired performance in your code, there is no need to
move to the next step. Each of the steps in the development involve passing
more information to the ’C6000 tools. Even at the final step, development time
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is greatly reduced from that of hand-coding, and the performance approaches
the best that can be achieved by hand.

Internal benchmarking efforts at Texas Instruments have shown that most
loops achieve maximal throughput after steps 1 and 2. For loops that do not,
the C/C++ compiler offers a rich set of optimizations that can fine tune all from
the high level C language. For the few loops that need even further optimiza-
tions, the assembly optimizer gives the programmer more flexibility than
C/C++ can offer, works within the framework of C/C++, and is much like pro-
gramming in higher level C. For more information on the assembly optimizer,
see the TMS320C6000 Optimizing C/C++ Compiler User’s Guide and Chapter
6, Optimizing Assembly Code via Linear Assembly, in this book.

In order to aid the development process, some feedback is enabled by default
in the code generation tools. Additional feedback is generated with the -mw
option. Example 1–1 shows output from the compiler and/or assembly opti-
mizer of a particular loop.
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Example 1–1. Compiler and/or Assembly Optimizer Feedback

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Known Minimum Trip Count         : 2
;*      Known Maximum Trip Count         : 2
;*      Known Max Trip Count Factor      : 2
;*      Loop Carried Dependency Bound(^) : 4
;*      Unpartitioned Resource Bound     : 4
;*      Partitioned Resource Bound(*)    : 5
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     2        3
;*      .S units                     4        4
;*      .D units                     1        0
;*      .M units                     0        0
;*      .X cross paths               1        3
;*      .T address paths             1        0
;*      Long read paths              0        0
;*      Long write paths             0        0
;*      Logical  ops (.LS)           0        1     (.L or .S unit)
;*      Addition ops (.LSD)          6        3     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             3        4
;*      Bound(.L .S .D .LS .LSD)     5*       4
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 5  Register is live too long
;*         ii = 6  Did not find schedule
;*         ii = 7  Schedule found with 3 iterations in parallel
;*      done
;*
;*      Epilog not entirely removed
;*      Collapsed epilog stages     : 1
;*
;*      Prolog not removed
;*      Collapsed prolog stages     : 0
;*
;*      Minimum required memory pad : 2 bytes
;*
;*      Minimum safe trip count     : 2
;*
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

This feedback is important in determining which optimizations might be useful
for further improved performance. The following section, Understanding Feed-
back, is provided as a quick reference to techniques that can be used to opti-
mize loops and refers to specific sections within this book for more detail.
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1.4 Understanding Feedback

The compiler provides some feedback by default. Additional feedback is gen-
erated with the -mw option. The feedback is located in the .asm file that the
compiler generates. In order to view the feedback, you must also enable -k
which retains the .asm output from the compiler. By understanding feedback,
you can quickly tune your C code to obtain the highest possible performance.

The feedback in Example 1–1 is for an innermost loop. On the ’C6000, C code
loop performance is greatly affected by how well the compiler can software
pipeline. The feedback is geared for explaining exactly what all the issues with
pipelining the loop were and what the results obtained were. Understanding
feedback will focus on all the components in the software pipelining feedback
window.

The compiler goes through three basic stages when compiling a loop. Here we
will focus on the comprehension of these stages and the feedback produced
by them. This, combined with the Feedback Solutions in Appendix A will send
you well on your way to fully optimizing your code with the ’C6000 compiler.
The three stages are:

1) Qualify the loop for software pipelining

2) Collect loop resource and dependency graph information

3) Software pipeline the loop

1.4.1 Stage 1: Qualify the Loop for Software Pipelining

The result of this stage will show up as the first three or four lines in the feed-
back window as long as the compiler qualifies the loop for pipelining:

Example 1–2. Stage 1 Feedback

;*      Known Minimum Trip Count         : 2
;*      Known Maximum Trip Count         : 2
;*      Known Max Trip Count Factor      : 2

The compiler tries to identify what the loop counter (named trip counter be-
cause of the number of trips through a loop) is and any information about the
loop counter such as minimum value (known minimum trip count), and wheth-
er it is a multiple of something (has a known maximum trip count factor).

If factor information is known about a loop counter, the compiler can be more
aggressive with performing packed data processing and loop unrolling opti-
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mizations. For example, if the exact value of a loop counter is not known but
it is known that the value is a multiple of some number, the compiler may be
able to unroll the loop to improve performance.

There are several conditions that must be met before software pipelining is al-
lowed, or legal, from the compiler’s point of view. These conditions are:

� It cannot have too many instructions in the loop. Loops that are too big,
typically require more registers than are available and require a longer
compilation time.

� It cannot call another function from within the loop unless the called func-
tion is inlined. Any break in control flow makes it impossible to software
pipeline as multiple iterations are executing in parallel.

If any of the conditions for software pipelining are not met, qualification of the
pipeline will halt and a disqualification messages will appear. For more infor-
mation about what disqualifies a loop from being software-pipelined, see sec-
tion 3.4.3.6, on page 3-50.
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1.4.2 Stage 2: Collect loop resource and dependency graph information

The second stage of software pipelining a loop is collecting loop resource and
dependency graph information. The results of stage 2 will be displayed in the
feedback window as follows:

Example 1–3. Stage 2 Feedback

;*      Loop Carried Dependency Bound(^) : 4
;*      Unpartitioned Resource Bound     : 4
;*      Partitioned Resource Bound(*)    : 5
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     2        3
;*      .S units                     4        4
;*      .D units                     1        0
;*      .M units                     0        0
;*      .X cross paths               1        3
;*      .T address paths             1        0
;*      Long read paths              0        0
;*      Long write paths             0        0
;*      Logical  ops (.LS)           0        1     (.L or .S unit)
;*      Addition ops (.LSD)          6        3     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             3        4
;*      Bound(.L .S .D .LS .LSD)     5*       4

� Iteration interval  (ii). The number of cycles between the initiation of
successive iterations of the loop. The smaller the iteration interval, the
fewer cycles it takes to execute a loop. All of the numbers shown in each
row of the feedback imply something about what the minimum iteration in-
terval (mii) will be for the compiler to attempt initial software pipelining.

Several things will determine what the mii of the loop is and are described
in the following sections. The mii is simply the maximum of any of these
individual mii’s.

� Loop carried dependency bound . The distance of the largest loop carry
path, if one exists. A loop carry path occurs when one iteration of a loop
writes a value that must be read in a future iteration. Instructions that are
part of the loop carry bound are marked with the ̂  symbol in the assembly
code saved with the –k option in the *.asm file. The number shown for the
loop carried dependency bound is the minimum iteration interval due to a
loop carry dependency bound for the loop.

Often, this loop carried dependency bound is due to lack of knowledge by
the compiler about certain pointer variables. When exact values of point-
ers are not known, the compiler must assume that any two pointers might
point to the same location. Thus, loads from one pointer have an implied
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dependency to another pointer performing a store and vice versa. This can
create large (and usually unnecessary) dependency paths. When the
Loop Carried Dependency Bound is larger than the Resource Bound, this
is often the culprit. Potential solutions for this are shown in Appendix A,
Feedback Solutions.

� Unpartitioned resource bound across all resources . The best case re-
source bound mii before the compiler has partitioned each instruction to
the A or B side. In Example 1–3, the unpartitioned resource bound is 4 be-
cause the .S units are required for 8 cycles, and there are 2 .S units.

� Partitioned resource bound across all resources . The mii after the in-
structions are partitioned to the A and B sides. In Example 1–3, after parti-
tioning, we can see that the A side .L, .S, and .D units are required for a
total of 13 cycles, making the partitioned resource bound �13/5� � 5. For
more information, see the description of Bound  (.L .S .D .LS .LSD) later
in this section.

� Resource partition table . Summarizes how the instructions have been
assigned to the various machine resources and how they have been parti-
tioned between the A and B side. An asterisk is used to mark those entries
that determine the resource bound value – in other words the maximum
mii. Because the resources on the C6000 architecture are fairly orthogo-
nal, many instructions can execute 2 or more different functional units. For
this reason, the table breaks these functional units down by the possible
resource combinations. The table entries are described below:

� Individual Functional Units  (.L .S .D .M) show the total number of
instructions that specifically require the .L, .S, .D, or .M functional
units. Instructions that can operate on multiple different functional
units are not included in these counts. They are described below in the
Logical Ops (.LS) and Addition Ops (.LSD) rows.

� .X cross paths  represents the total number of AtoB and BtoA. When
this particular row contains an asterisk, it has a resource bottleneck
and partitioning may be a problem.

� .T address paths   represents the total number of address paths re-
quired by the loads and stores in the loop. This is actually different
from the number .D units needed as some other instructions may use
the .D unit. In addition, there can be cases where the number of .T ad-
dress paths on a particular side might be higher than the number of .D
units if .D units are partitioned evenly between A and B and .T address
paths are not.

� Long read path  represents the total number of long read port paths .
All long operations with long sources use this port to do extended
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width (40-bit) reads. Store operations share this port so they also
count toward this total. Long write path represents the total number of
long write port paths. All instructions with long (40bit) results will be
counted in this number.

� Logical ops  (.LS) represents the total number of instructions that can
use either the .L or .S unit.

� Addition ops  (.LSD)  represents the total number of instructions that
can use either the .L or .S or .D unit.

� Bound  (.L .S .LS) represents the resource bound value as deter-
mined by the number of instructions that use the .L and .S units. It is
calculated with the following formula:

Bound(.L .S .LS ) = ceil((.L + .S + .LS) / 2)

Where ceil represents the ceiling function. This means you always
round up to the nearest integer. In Example 1–3, if the B side needs:

3 .L unit only instructions

4 .S unit only instructions

1 logical .LS instruction

you would need at least  �8/2� cycles or 5 cycles to issue these.

� Bound (.L .S .D .LS .LSD)  represents the resource bound value as
determined by the number of instructions that use the .D, .L and .S
unit. It is calculated with the following formula:

Bound(.L .S .D .LS .LSD) = ceil((.L + .S + .D + .LS
+ .LSD) / 3)

Where ceil represents the ceiling function. This means you always
round up to the nearest integer. In Example 1–3, the A side needs:

2 .L unit only instructions, 4 .S unit only instructions, 1 .D unit only in-
structions, 0 logical .LS instructions, and 6 addition .LSD instructions

you would need at least �13/3� cycles or 5 cycles to issue these.
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1.4.3 Stage 3: Software pipeline the loop

Once the compiler has completed qualification of the loop, partitioned it, and
analyzed the necessary loop carry and resource requirements, it can begin to
attempt software pipelining. This section will focus on the following lines from
the feedback example:

Example 1–4. Stage 3 Feedback

;*      Searching for software pipeline schedule at ...
;*         ii = 5  Register is live too long
;*         ii = 6  Did not find schedule
;*         ii = 7  Schedule found with 3 iterations in parallel
;*      done
;*
;*      Epilog not entirely removed
;*      Collapsed epilog stages     : 1
;*
;*      Prolog not removed
;*      Collapsed prolog stages     : 0
;*
;*      Minimum required memory pad : 2 bytes
;*
;*      Minimum safe trip count     : 2

The first thing the compiler attempts during this stage, is to schedule the loop
at an iteration interval (ii) equal to the mii determined in stage 2: collect loop
resource and dependency graph information. In the example above, since 11
.M units on the A side was the mii bottleneck, our example starts with:

;*      Searching for software pipeline schedule at ...
;*         ii = 5  Register is live too long

If the attempt was not successful, the compiler provides additional feedback
to help explain why. In this case, the compiler cannot find a schedule at 11
cycles because register is live too long. For more information about live too
long issues, see section 6.10, Live-Too-Long Issues, on page 6-101.

Sometimes the compiler finds a valid software pipeline schedule but one or
more of the values is live too long. Lifetime of a register is determined by the
cycle a value is written into it and by the last cycle this value is read by another
instruction. By definition, a variable can never be live longer than the ii of the
loop, because the next iteration of the loop will overwrite that value before it
is read.

The compiler then proceeds to:

ii = 6 Did not find schedule
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Sometimes, due to a complex loop or schedule, the compiler simply cannot
find a valid software pipeline schedule at a particular iteration interval.

Regs Live Always : 1/5 (A/B–side)

Max Regs Live : 14/19

Max Cond Regs Live : 1/0

� Regs Live Always  refers to the number of registers needed for variables
to be live every cycle in the loop. Data loaded into registers outside the
loop and read inside the loop will fall into this category.

� Max Regs Live  refers to the maximum number of variable live on any one
cycle in the loop. If there are 33 variables live on one of the cycles inside
the loop, a minimum of 33 registers is necessary and this will not be pos-
sible with the 32 registers available on the ’C62x and ’C67x cores. In addi-
tion, this is broken down between A and B side, so if there is uneven parti-
tioning with 30 values and there are 17 on one side and 13 on the other,
the same problem will exist. This situation does not apply to the 64 regis-
ters available on the ’C64x core.

� Max Cond Regs Live  tells us if there are too many conditional values
needed on a given cycle. The ’C62x and ’C67x cores have 2 A side and
3 B side condition registers available. The ’C64x core has 3 A side and 3
B side condition registers available.

After failing at ii = 6, the compiler proceeds to ii = 7:

ii = 7 Schedule found with 3 iterations in parallel

It is successful and finds a valid schedule with 3 iterations in parallel. This
means it is pipelined 3 deep. In other words, before iteration n has completed,
iterations n+1 and n+2 have begun.

Each time a particular iteration interval fails, the ii is increased and retried. This
continues until the ii is equal to the length of a list scheduled loop (no software
pipelining). This example shows two possible reasons that a loop was not soft-
ware pipelined. To view the full detail of all possible messages and their de-
scriptions, see Feedback Solutions in Appendix A.

After a successful schedule is found at a particular iteration interval, more in-
formation about the loop is displayed. This information may relate to the load
threshold, epilog/prolog collapsing, and projected memory bank conflicts.

Speculative Load Threshold : 12

When an epilog is removed, the loop is run extra times to finish out the last it-
erations, or pipe–down the loop. In doing so, extra loads from new iterations
of the loop will speculatively execute (even though their results will never be



Understanding Feedback

 1-16

used). In order to ensure that these memory accesses are not pointing to inval-
id memory locations, the Load Threshold value tells you how many extra bytes
of data beyond your input arrays must be valid memory locations (not a
memory mapped I/O etc) to ensure correct execution. In general, in the large
address space of the ’C6000 this is not usually an issue, but you should be
aware of this.

 Epilog not entirely removed
 Collapsed epilog stages : 1

This refers to the number of epilog stages, or loop iterations that were re-
moved.  This can produce a large savings in code size. The –mh enables spec-
ulative execution and improves the compiler’s ability to remove epilogs and
prologs.  However, in some cases epilogs and prologs can be partially or en-
tirely removed without speculative execution. Thus, you may see nonzero val-
ues for this even without the –mh option.

Prolog not removed 
Collapsed prolog stages : 0

This means that the prolog was not removed.  For various technical reasons,
prolog and epilog stages may not be partially or entirely removed.

Minimum required memory pad : 2 bytes

The minimum required memory padding to use -mh is 2 bytes. See the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-
tion on the -mh option and the minimum required memory padding.

Minimum safe trip count :2

This means that the loop must execute at lease twice to safely use the software
pipelined version of the loop.  If this value is less than the known minimum trip
count, two versions of the loop will be generated. For more information on elim-
inating redundant loops, see section 3.4.3.2, Eliminating Redundant Loops,
on page 3-43.
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Compiler Optimization Tutorial

This chapter walks you through the code development flow and introduces you
to compiler optimization techniques that were introduced in Chapter 1. It uses
step-by-step instructions and code examples to show you how to use the soft-
ware development tools in each phase of development.

Before you start these tutorials, you should install Code Composer Studio.

The sample code that is used in this tutorial is included on the code generation
tools and Code Composer Studio CD-ROM. When you install your code gen-
eration tools, the example code is installed in c:\ti\c6000\tutorial\c_tutorial.
Use the code in that directory to go through the examples in this chapter.

The examples in this chapter were run on the most recent version of the soft-
ware development tools that were available as of the publication of this book.
Because the tools are being continuously improved, you may get different re-
sults if you are using a more recent version of the tools.

Topic Page

2.1 Introduction: Simple C Tuning 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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2.1 Introduction: Simple C Tuning

The ’C6000 compiler delivers the industry’s best ”out of the box” C perfor-
mance. In addition to performing many common DSP optimizations, the
’C6000 compiler also performs software pipelining on various MIPS intensive
loops. This feature is important for any pipelined VLIW machine to perform. In
order to take full advantage of the eight available independent functional units,
the dependency graph of every loop is analyzed and then scheduled by soft-
ware pipelining. The more information the compiler gathers about the depen-
dency graph, the better the resulting schedule. Because of this, the ’C6000
compiler provides many features that facilitate sending information to the com-
piler to ”tune” your C code.

These tutorial lessons focus on four key areas where tuning your C code can
offer great performance improvements. In this tutorial, a single code example
is used to demonstrate all four areas. The following example is the vector
summation of two weighted vectors.

Example 2–1. Vector Summation of Two Weighted Vectors

void lesson_c(short *xptr, short *yptr, short *zptr, short *w_sum, int N){
int i, w_vec1, w_vec2;
short w1,w2;

w1 = zptr[0];
w2 = zptr[1];
for (i = 0; i < N; i++){

w_vec1 = xptr[i] * w1;
w_vec2 = yptr[i] * w2;
w_sum[i] = (w_vec1 + w_vec2) >> 15;
}

}
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2.1.1 Project Familiarization

In order to load and run the provided example project workspace, C_tuto-
rial.wks, you must select the appropriate target from Code Composer Setup.
The included C_tutorial project was built and saved as a workspace (c_tuto-
rial.wks). This workspace assumes a C62x fast simulator little endian target.
Therefore, you need to import the same target from Code Composer Setup:

Set Up Code Composer Studio for C62x Fast Simulator Little Endian

1) Click on Setup CCStudio to setup the target.

2) From the import configuration window, select C62xx Fast Sim Ltl Endian.

3) Click on the ”Add to system configuration” button.

4) Click on the close button and exit setup.

5) Save the configuration on exit.

Load the Tutorial Workspace

1) Start Code Composer Studio.

2) From the menu bar, select File –>Workspace –>Load Workspace.

Browse to: ti\c6000\tutorial\c_tutorial\C_tutorial.wks

3) Select C_tutorial.wks, and click Open to load the workspace.

Build tutor.out

From the menu bar, select Project –> Rebuild All

Load tutor.out 

1) From the menu bar, select File –>Load Program.

Browse to ti\c6000\tutorial\c_tutorial\

2) Select tutor.out, and click Open to load the file.

The disassembly window with a cursor at c_int00 is displayed and high-
lighted in yellow.

Profile the C_tutorial project

1) From the menu bar, select Profiler–>Enable Clocks.

The Profile Statistics window shows profile points that are already set up
for each of the four functions, tutor1–4.
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2) From the menu bar, select Debug–>Run.

This updates the Profile Statistics and Dis–Assembly window. You can
also click on the Run icon, or F5 key to run the program.

3) Click on the location bar at the top of the Profile Statistics window.

The second profile point in each file (the one with the largest line number) con-
tains the data you need. This is because profile points (already set up for you
at the beginning and end of each function) count from the previous profile
point. Thus, the cycle count data of the function is contained in the second pro-
file point.

You can see cycle counts of 414, 98, 79, and 55 for functions in tutor1–4, run-
ning on the C6xxx simulator. Each of these functions contains the same C code
but has some minor differences related to the amount of information to which
the compiler has access.

The rest of this tutorial discusses these differences and teaches you how and
when you can tune the compiler to obtain performance results comparable to
fully optimized hand–coded assembly.

2.1.2 Getting Ready for Lesson 1

Compile and rerun the project

1) From the menu bar, select Project–>Rebuild All, or click on the Rebuild All
icon.

All of the files are built with compiler options, –gk –mw –mhh –o3 –fr
C:\ti\c6000\tutorial\c_tutorial.

2) From the menu bar, choose File–>Reload Program.

This reloads tutor.out and returns the cursor to c_int00.

3) From the menu bar, choose Debug Run, or click the Run icon.

The count in the Profile Statistics window now equals 2 with the cycle
counts being an average of the two runs.

4) Right–click in the Profile Statistics window and select clear all.

This clears the Profile Statistics window.

5) From the menu bar, select Debug–>Reset DSP.

6) From the menu bar, select Debug–>Restart.

This restarts the program from the entry point. You are now ready to start
lesson 1.
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2.2 Lesson 1: Loop Carry Path From Memory Pointers

Open lesson_c.c

In the Project View window, right–click on lesson_c.c and select Open.

Example 2–2. lesson_c.c

void lesson_c(short *xptr, short *yptr, short *zptr, short *w_sum, int N) { 
int i, w_vec1, w_vec2; 
short w1,w2; 

w1 = zptr[0]; 
w2 = zptr[1]; 
for (i = 0; i < N; i++){ 

w_vec1 = xptr[i] * w1; 
w_vec2 = yptr[i] * w2; 
w_sum[i] = (w_vec1 + w_vec2) >> 15; 
} 

}

Compile the project and analyze the feedback in lesson_c.asm

When you rebuilt the project in Getting Ready for Lesson 1, each file was com-
piled with –gk –mhh –o3. Because option –k was used, a *.asm file for each
*.c file is included in the rebuilt project. The –g option is used here to enable
symbolic debugging which is required in CCS for profiling, but would normally
be removed to enable additional optimizations across C statements.

1) Select File –>Open. From the Files of Type drop–down menu, select
*.asm.

2) Select lesson_c.asm and click Open.

Each .asm file contains software pipelining information. You can see the
results in Example 2–3, Feedback From lesson_c.asm:
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Example 2–3. Feedback From lesson_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Known Minimum Trip Count         : 1
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 10
;*      Unpartitioned Resource Bound     : 2
;*      Partitioned Resource Bound(*)    : 2
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     1        1
;*      .D units                     2*       1
;*      .M units                     1        1
;*      .X cross paths               1        0
;*      .T address paths             2*       1
;*      Long read paths              1        0
;*      Long write paths             0        0
;*      Logical  ops (.LS)           1        0     (.L or .S unit)
;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             1        1
;*      Bound(.L .S .D .LS .LSD)     2*       1
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 10 Schedule found with 1 iterations in parallel
;*      done
;*
;*      Collapsed epilog stages     : 0
;*      Collapsed prolog stages     : 0
;*
;*      Minimum safe trip count     : 1
;*
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SINGLE SCHEDULED ITERATION
;*
;*   C17:
;*              LDH     .D1T1   *A4++,A0          ;  ^ |32|
;*   ||         LDH     .D2T2   *B4++,B6          ;  ^ |32|
;*              NOP             2
;*      [ B0]   SUB     .L2     B0,1,B0           ; |33|
;*      [ B0]   B       .S2     C17               ; |33|
;*              MPY     .M1     A0,A5,A0          ;  ^ |32|
;*   ||         MPY     .M2     B6,B5,B6          ;  ^ |32|
;*              NOP             1
;*              ADD     .L1X    B6,A0,A0          ;  ^ |32|
;*              SHR     .S1     A0,15,A0          ;  ^ |32|
;*              STH     .D1T1   A0,*A3++          ;  ^ |32|
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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A schedule with ii = 10, implies that each iteration of the loop takes ten cycles.
Obviously, with eight resources available every cycle on such a small loop, we
would expect this loop to do better than this.

Q Where are the problems with this loop?

A A closer look at the feedback in lesson_c.asm gives us the answer.

Q Why did the loop start searching for a software pipeline at ii=10 (for a
10–cycle loop)?

A The first iteration interval attempted by the compiler is always the maximum
of the Loop Carried Dependency Bound and the Partitioned Resource Bound.
In such a case, the compiler thinks there is a loop carry path equal to ten
cycles:

;* Loop Carried Dependency Bound(^) : 10

The ̂  symbol is interspersed in the assembly output in the comments of each
instruction in the loop carry path, and is visible in lesson_c.asm.

Example 2–4. lesson_c.asm

L2:    ; PIPED LOOP KERNEL

           LDH     .D1T1   *A4++,A0          ;  ^ |32|
||         LDH     .D2T2   *B4++,B6          ;  ^ |32|

           NOP             2
   [ B0]   SUB     .L2     B0,1,B0           ; |33|
   [ B0]   B       .S2     L2                ; |33|

           MPY     .M1     A0,A5,A0          ;  ^ |32|
||         MPY     .M2     B6,B5,B6          ;  ^ |32|

           NOP             1
           ADD     .L1X    B6,A0,A0          ;  ^ |32|
           SHR     .S1     A0,15,A0          ;  ^ |32|
           STH     .D1T1   A0,*A3++          ;  ^ |32|

You can also use a dependency graph to analyze feedback, for example:

Q Why is there a dependency between STH and LDH? They do not use any
common registers so how can there be a dependency?

A If we look at the original C code in lesson_c.c, we see that the LDHs corre-
spond to loading values from xptr and yptr, and the STH corresponds to storing
values into w_sum array.

Q Is there any dependency between xptr, yptr, and w_sum?
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A If all of these pointers point to different locations in memory there is no de-
pendency. However, if they do, there could be a dependency.

Because all three pointers are passed into lesson_c, there is no way for the
compiler to be sure they don’t alias, or point to the same location as each other.
This is a memory alias disambiguation problem. In this situation, the compiler
must be conservative to guarantee correct execution. Unfortunately, the re-
quirement for the compiler to be conservative can have dire effects on the per-
formance of your code.

We know from looking at the main calling function in tutor_d.c that in fact, these
pointers all point to separate arrays in memory. However, from the compiler’s
local view of lesson_c, this information is not available.

Q How can you pass more information to the compiler to improve its perfor-
mance?

A The next example, lesson1_c provides the answer:

Open lesson1_c.c and lesson1_c.asm

Example 2–5. lesson1_c.c

void lesson1_c(short * restrict xptr, short * restrict yptr, short *zptr, 
               short *w_sum, int N)
{
    int i, w_vec1, w_vec2;
    short w1,w2;

    w1 = zptr[0];
    w2 = zptr[1];
    for (i = 0; i < N; i++)
    {
        w_vec1 =  xptr[i] * w1;
        w_vec2 =  yptr[i] * w2;
        w_sum[i] = (w_vec1 + w_vec2) >> 15;
    }

}

The only change made in lesson1_c is the addition of the restrict type qualifier
for xptr and yptr. Since we know that these are actually separate arrays in
memory from w_sum, in function lesson1_c, we can declare that nothing else
points to these objects. No other pointer in lesson1_c.c points to xptr and no
other pointer in lesson1_c.c points to zptr. See the TMS320C6000 Optimizing
C/C++ Compiler User’s Guide for more information on the restrict type qualifi-
er. Because of this declaration, the compiler knows that there are no possible
dependency between xptr, yptr, and w_sum. Compiling this file creates feed-
back as shown in Example 2–6, lesson1_c.asm:
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Example 2–6. lesson1_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Known Minimum Trip Count         : 1
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 0
;*      Unpartitioned Resource Bound     : 2
;*      Partitioned Resource Bound(*)    : 2
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     1        1
;*      .D units                     2*       1
;*      .M units                     1        1
;*      .X cross paths               1        0
;*      .T address paths             2*       1
;*      Long read paths              1        0
;*      Long write paths             0        0
;*      Logical  ops (.LS)           1        0     (.L or .S unit)
;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             1        1
;*      Bound(.L .S .D .LS .LSD)     2*       1
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 2  Schedule found with 5 iterations in parallel
;*      done
;*
;*      Collapsed epilog stages     : 4
;*      Prolog not entirely removed
;*      Collapsed prolog stages     : 2
;*
;*      Minimum required memory pad : 8 bytes
;*
;*      Minimum safe trip count     : 1
;*
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SINGLE SCHEDULED ITERATION
;*
;*   C17:
;*              LDH     .D1T1   *A0++,A4          ; |32|
;*   ||         LDH     .D2T2   *B4++,B6          ; |32|
;*              NOP             2
;*      [ B0]   SUB     .L2     B0,1,B0           ; |33|
;*      [ B0]   B       .S2     C17               ; |33|
;*              MPY     .M1     A4,A5,A3          ; |32|
;*   ||         MPY     .M2     B6,B5,B7          ; |32|
;*              NOP             1
;*              ADD     .L1X    B7,A3,A3          ; |32|
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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At this point, the Loop Carried Dependency Bound is zero. By simply passing
more information to the compiler, we allowed it to improve a 10–cycle loop to
a 2–cycle loop.

Lesson 4 in this tutorial shows how the compiler retrieves this type of informa-
tion automatically by gaining full view of the entire program with program level
optimization switches.

A special option in the compiler, -mt, tells the compiler to ignore alias disambi-
guation problems like the one described in lesson_c. Try using this option to
rebuild the original lesson_c example and look at the results.

Rebuild lesson_c.c using the –mt option

1) From the menu bar, select Project–>Options.

The Build Options dialog window appears.

2) Select the Compiler tab.

3) In the Category box, select Advanced.

4) In the Aliasing drop-down box, select No Bad Alias Code.

The -mt option will appear in the options window.

5) Click OK to set the new options.

6) Select lesson_c.c by selecting it in the project environment, or double–
clicking on it in the Project View window.

7) Select Project–>Build, or click on the Build icon.

If prompted, reload lesson_c.asm.

8) From the menu bar, select File–>Open, and select lesson_c.asm in Open
window.

You can now view lesson_c.asm in the main window. In the main window, you
see that the file header contains a description of the options that were used
to compile the file under Global File Parameters. The following line implies that
–mt was used:

;* Memory Aliases : Presume not aliases (optimistic)

9) Scroll down until you see the feedback embedded in the lesson_c.asm file.

You now see the following:

;* Loop Carried Dependency Bound(^) : 0

;* ii = 2 Schedule found with 5 iterations in parallel

This indicates that a 2–cycle loop was found. Lesson 2 will address information
about potential improvements to this loop.
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Table 2–1. Status Update: Tutorial example lesson_c lesson1_c

Tutorial Example Lesson_c Lesson1_c

Potential pointer aliasing info (discussed in Lesson 1) � �

Loop count info – minimum trip count (discussed in Lesson 2) � �

Loop count info – max trip count factor (discussed in Lesson 2) � �

Alignment info – xptr & yptr aligned on a word boundary (discussed in Lesson
3)

� �

Cycles per iteration (discussed in Lesson 1–3) 10 2
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2.3 Lesson 2: Balancing Resources With Dual-Data Paths

Lesson 1 showed you a simple way to make large performance gains in les-
son_c. The result is lesson1_c with a 2–cycle loop.

Q Is this the best the compiler can do? Is this the best that is possible on the
VelociTI architecture?

A Again, the answers lie in the amount of knowledge to which the compiler has
access. Let’s analyze the feedback of lesson1_c to determine what improve-
ments could be made:

Open lesson1_c.asm
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Example 2–7. lesson1_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Known Minimum Trip Count         : 1
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 0
;*      Unpartitioned Resource Bound     : 2
;*      Partitioned Resource Bound(*)    : 2
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     1        1
;*      .D units                     2*       1
;*      .M units                     1        1
;*      .X cross paths               1        0
;*      .T address paths             2*       1
;*      Long read paths              1        0
;*      Long write paths             0        0
;*      Logical  ops (.LS)           1        0     (.L or .S unit)
;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             1        1
;*      Bound(.L .S .D .LS .LSD)     2*       1
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 2  Schedule found with 5 iterations in parallel
;*      done
;*
;*      Collapsed epilog stages     : 4
;*      Prolog not entirely removed
;*      Collapsed prolog stages     : 2
;*
;*      Minimum required memory pad : 8 bytes
;*
;*      Minimum safe trip count     : 1
;*
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SINGLE SCHEDULED ITERATION
;*
;*   C17:
;*              LDH     .D1T1   *A0++,A4          ; |32|
;*   ||         LDH     .D2T2   *B4++,B6          ; |32|
;*              NOP             2
;*      [ B0]   SUB     .L2     B0,1,B0           ; |33|
;*      [ B0]   B       .S2     C17               ; |33|
;*              MPY     .M1     A4,A5,A3          ; |32|
;*   ||         MPY     .M2     B6,B5,B7          ; |32|
;*              NOP             1
;*              ADD     .L1X    B7,A3,A3          ; |32|
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
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The first iteration interval (ii) attempted was two cycles because the Partitioned
Resource Bound is two. We can see the reason for this if we look below at the
.D units and the .T address paths. This loop requires two loads (from xptr and
yptr) and one store (to w_sum) for each iteration of the loop.

Each memory access requires a .D unit for address calculation, and a .T ad-
dress path to send the address out to memory. Because the ’C6000 has two
.D units and two .T address paths available on any given cycle (A side and B
side), the compiler must partition at least two of the operations on one side (the
A side). That means that these operations are the bottleneck in resources
(highlighted with an *) and are the limiting factor in the Partitioned Resource
Bound. The feedback in lesson1_c.asm shows that there is an imbalance in
resources between the A and B side due, in this case, to an odd number of op-
erations being mapped to two sides of the machine.

Q Is it possible to improve the balance of resources?

A One way to balance an odd number of operations is to unroll the loop. Now,
instead of three memory accesses, you will have six, which is an even number.
You can only do this if you know that the loop counter is a multiple of two; other-
wise, you will incorrectly execute too few or too many iterations. In tutor_d.c,
LOOPCOUNT is defined to be 40, which is a multiple of two, so you are able
to unroll the loop.

Q Why did the compiler not unroll the loop?

A In the limited scope of lesson1_c, the loop counter is passed as a parameter
to the function. Therefore, it might be any value from this limited view of the
function. To improve this scope you must pass more information to the compil-
er. One way to do this is by inserting a MUST_ITERATE pragma.  A MUST_IT-
ERATE pragma is a way of passing iteration information to the compiler. There
is no code generated by a MUST_ITERATE pragma; it is simply read at com-
pile time to allow the compiler to take advantage of certain conditions that may
exist.  In this case, we want to tell the compiler that the loop will execute a multi-
ple of 2 times; knowing this information, the compiler can unroll the loop auto-
matically.

Unrolling a loop can incur some minor overhead in loop setup. The compiler
does not unroll loops with small loop counts because unrolling may not reduce
the overall cycle count. If the compiler does not know what the minimum value
of the loop counter is, it will not automatically unroll the loop. Again, this is infor-
mation the compiler needs but does not have in the local scope of lesson1_c.
You know that LOOPCOUNT is set to 40, so you can tell the compiler that N
is greater than some minimum value. lesson2_c demonstrates how to pass
these two pieces of information.
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Open lesson2_c.c

Example 2–8. lesson2_c.c

void lesson2_c(short * restrict xptr, short * restrict yptr, short *zptr, 
               short *w_sum, int N)
{
    int i, w_vec1, w_vec2;
    short w1,w2;

    w1 = zptr[0];
    w2 = zptr[1];
    #pragma MUST_ITERATE(20, , 2);
    for (i = 0; i < N; i++)
    {
        w_vec1 =  xptr[i] * w1;
        w_vec2 =  yptr[i] * w2;
        w_sum[i] = (w_vec1+w_vec2) >> 15;
    }

}

In lesson2_c.c, no code is altered, only additional information is passed via the
MUST_ITERATE pragma. We simply guarantee to the compiler that the trip
count (in this case the trip count is N) is a multiple of two and that the trip count
is greater than or equal to 20.  The first argument for MUST_ITERATE is the
minimum number of times the loop will iterate. The second argument is the
maximum number of times the loop will iterate. The trip count must be evenly
divisible by the third argument. See the TMS320C6000 Optimizing C/C++
Compiler User’s Guide for more information about the MUST_ITERATE prag-
ma.

For this example, we chose a trip count large enough to tell the compiler that
it is more efficient to unroll. Always specify the largest minimum trip count that
is safe.

Open lesson2_c.asm and examine the feedback
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Example 2–9. lesson2_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Loop Unroll Multiple             : 2x
;*      Known Minimum Trip Count         : 10
;*      Known Maximum Trip Count         : 1073741823
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 0
;*      Unpartitioned Resource Bound     : 3
;*      Partitioned Resource Bound(*)    : 3
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     2        1
;*      .D units                     3*       3*
;*      .M units                     2        2
;*      .X cross paths               1        1
;*      .T address paths             3*       3*
;*      Long read paths              1        1
;*      Long write paths             0        0
;*      Logical  ops (.LS)           1        1     (.L or .S unit)
;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             2        1
;*      Bound(.L .S .D .LS .LSD)     2        2
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 3  Schedule found with 5 iterations in parallel
;*      done
;*
;*      Epilog not entirely removed
;*      Collapsed epilog stages     : 2
;*
;*      Prolog not entirely removed
;*      Collapsed prolog stages     : 3
;*
;*      Minimum required memory pad : 8 bytes
;*
;*      Minimum safe trip count    : 4

Notice the following things in the feedback:

A schedule with three cycles (ii=3): You can tell by looking at the .D units and
.T address paths that this 3–cycle loop comes after the loop has been unrolled
because the resources show a total of six memory accesses evenly balanced
between the A side and B side. Therefore, our new effective loop iteration inter-
val is 3/2 or 1.5 cycles.

A Known Minimum Trip Count of 10: This is because we specified the count
of the original loop to be greater than twenty and a multiple of two (at least
twenty–two) and after unrolling, this is cut in half. Also, a new line, Known Maxi-
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mum Trip Count, is displayed in the feedback. This represents the maximum
signed integer value divided by two, or 3FFFFFFFh.

Therefore, by passing information without modifying the loop code, compiler
performance improves from a 10–cycle loop to 2 cycles and now to 1.5 cycles.

Q Is this the lower limit?

A Check out Lesson 3 to find out!

Table 2–2. Status Update: Tutorial example lesson_c lesson1_c lesson2_c

Tutorial Example Lesson_c Lesson1_c Lesson2_c

Potential pointer aliasing info (discussed in Lesson 1) � � �

Loop count info – minimum trip count (discussed in Lesson 2) � � �

Loop count info – max trip count factor (discussed in Lesson 2) � � �

Alignment info – xptr & yptr aligned on a word boundry (dis-
cussed in Lesson 3)

� � �

Cycles per iteration (discussed in Lesson 1–3) 10 2 1.5
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2.4 Lesson 3: Packed Data Optimization of Memory Bandwidth

Lesson 2 produced a 3–cycle loop that performed two iterations of the original
vector sum of two weighted vectors. This means that each iteration of our loop
now performs six memory accesses, four multiplies, two adds, two shift opera-
tions, a decrement for the loop counter, and a branch. You can see this phe-
nomenon in the feedback of lesson2_c.asm.

Open lesson2_c.asm

Example 2–10. lesson2_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Loop Unroll Multiple             : 2x
;*      Known Minimum Trip Count         : 10
;*      Known Maximum Trip Count         : 1073741823
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 0
;*      Unpartitioned Resource Bound     : 3
;*      Partitioned Resource Bound(*)    : 3
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     2        1
;*      .D units                     3*       3*
;*      .M units                     2        2
;*      .X cross paths               1        1
;*      .T address paths             3*       3*
;*      Long read paths              1        1
;*      Long write paths             0        0
;*      Logical  ops (.LS)           1        1     (.L or .S unit)
;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             2        1
;*      Bound(.L .S .D .LS .LSD)     2        2
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 3  Schedule found with 5 iterations in parallel
;*      done
;*
;*      Epilog not entirely removed 
;*      Collapsed epilog stages     : 2
;*
;*      Prolog not entirely removed 
;*      Collapsed prolog stages     : 3
;*
;*      Minimum required memory pad : 8 bytes
;*
;*      Minimum safe trip count     : 4
;*
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*



Lesson 3: Packed Data Optimization of Memory Bandwidth

2-19Compiler Optimization Tutorial

The six memory accesses appear as .D and .T units. The four multiplies ap-
pear as .M units. The two shifts and the branch show up as .S units. The decre-
ment and the two adds appear as .LS and .LSD units. Due to partitioning, they
don’t all show up as .LSD operations. Two of the adds must read one value
from the opposite side. Because this operation cannot be performed on the .D
unit, the two adds are listed as .LS operations.

By analyzing this part of the feedback, we can see that resources are most lim-
ited by the memory accesses; hence, the reason for an asterisk highlighting
the .D units and .T address paths.

Q Does this mean that we cannot make the loop operate any faster?

A Further insight into the ’C6000 architecture is necessary here.

The C62x fixed-point device loads and/or stores 32 bits every cycle. In addi-
tion, the C67x floating-point and ’C64x fixed-point device loads two 64-bit val-
ues each cycle. In our example, we load four 16-bit values and store two 16–bit
values every three cycles. This means we only use 32 bits of memory access
every cycle. Because this is a resource bottleneck in our loop, increasing the
memory access bandwidth further improves the performance of our loop.

In the unrolled loop generated from lesson2_c, we load two consecutive 16-bit
elements with LDHs from both the xptr and yptr array.

Q Why not use a single LDW to load one 32-bit element, with the resulting reg-
ister load containing the first element in one-half of the 32-bit register and the
second element in the other half?

A This is called Packed Data optimization. Two 16-bit loads are effectively per-
formed by one single 32-bit load instruction.

Q Why doesn’t the compiler do this automatically in lesson2_c?

A Again, the answer lies in the amount of information the compiler has access
to from the local scope of lesson2_c.

In order to perform a LDW (32–bit load) on the ’C62x and ’C67x cores, the ad-
dress must be aligned to a word address; otherwise, incorrect data is loaded.
An address is word–aligned if the lower two bits of the address are zero. Unfor-
tunately, in our example, the pointers, xptr and yptr, are passed into lesson2_c
and there is no local scope knowledge as to their values. Therefore, the com-
piler is forced to be conservative and assume that these pointers might not be
aligned. Once again, we can pass more information to the compiler, this time
via the _nassert statement.

Open lesson3_c.c
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Example 2–11. lesson3_c.c

#define WORD_ALIGNED(x) (_nassert(((int)(x) & 0x3) == 0))

void lesson3_c(short * restrict xptr, short * restrict yptr, short *zptr, 
               short *w_sum, int N)
{
    int i, w_vec1, w_vec2;
    short w1,w2;

    WORD_ALIGNED(xptr);
    WORD_ALIGNED(yptr);

    w1 = zptr[0];
    w2 = zptr[1];
    #pragma MUST_ITERATE(20, , 2);
    for (i = 0; i < N; i++)
    {
        w_vec1 =  xptr[i] * w1;
        w_vec2 =  yptr[i] * w2;
        w_sum[i] = (w_vec1+w_vec2) >> 15;
    }
}

By asserting that xptr and yptr addresses ”anded” with 0x3 are equal to zero,
the compiler knows that they are word aligned. This means the compiler can
perform LDW and packed data optimization on these memory accesses.

Open lesson3_c.asm
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Example 2–12. lesson3_c.asm

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Loop Unroll Multiple             : 2x
;*      Known Minimum Trip Count         : 10
;*      Known Maximum Trip Count         : 1073741823
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 0
;*      Unpartitioned Resource Bound     : 2
;*      Partitioned Resource Bound(*)    : 2
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     2*       1
;*      .D units                     2*       2*
;*      .M units                     2*       2*
;*      .X cross paths               1        1
;*      .T address paths             2*       2*
;*      Long read paths              1        1
;*      Long write paths             0        0
;*      Logical  ops (.LS)           1        1     (.L or .S unit)
;*      Addition ops (.LSD)          0        1     (.L or .S or .D unit)
;*      Bound(.L .S .LS)             2*       1
;*      Bound(.L .S .D .LS .LSD)     2*       2*
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 2  Schedule found with 6 iterations in parallel
;*      done
;*
;*      Epilog not entirely removed
;*      Collapsed epilog stages     : 2
;*
;*      Prolog not removed
;*      Collapsed prolog stages     : 0
;*
;*      Minimum required memory pad : 8 bytes
;*
;*      Minimum safe trip count     : 8
;*

Success! The compiler has fully optimized this loop. You can now achieve two
iterations of the loop every two cycles for one cycle per iteration throughout.

The .D and .T resources now show four (two LDWs and two STHs for two itera-
tions of the loop).
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Table 2–3. Status Update: Tutorial example lesson_c lesson1_c lesson2_c lesson3_c

Tutorial Example Lesson_c Lesson1_c Lesson2_c Lesson3_c

Potential pointer aliasing info (discussed in Les-
son 1)

� � � �

Loop count info – minimum trip count (discussed
in Lesson 2)

� � � �

Loop count info – max trip count factor (dis-
cussed in Lesson 2)

� � � �

Alignment info – xptr & yptr aligned on a word
boundary (discussed in Lesson 3)

� � � �

Cycles per iteration (discussed in Lessons 1–3) 10 2 1.5 1
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2.5 Lesson 4: Program Level Optimization

In Lesson 3, you learned how to pass information to the compiler. This in-
creased the amount of information visible to the compiler from the local scope
of each function.

Q Is this necessary in all cases?

A The answer is no, not in all cases. First, if this information already resides
locally inside the function, the compiler has visibility here and restrict and
MUST_ITERATE statements are not usually necessary. For example, if xptr
and yptr are declared as local arrays, the compiler does not assume a depen-
dency with w_sum. If the loop count is defined in the function or if the loop sim-
ply described from one to forty, the MUST_ITERATE pragma is not necessary.

Secondly, even if this type of information is not declared locally, the compiler
can still have access to it in an automated way by giving it a program level view.
This module discusses how to do that.

The ’C6000 compiler provides two valuable switches, which enable program
level optimization: –pm and –op2. When these two options are used together,
the compiler can automatically extract all of the information we passed in the
previous examples. To tell the compiler to use program level optimization, you
need to turn on –pm and –op2.

Enable program level optimization

1) From the menu bar, choose Project –> Options, and click on the Basic
category.

2) Select No External Refs in the Program Level Optimization drop-down
box. This adds –pmm (same as –pm) and –op2 to the command line.

View profile statistics

1) Clear the Profile Statistics window by right clicking on it and selecting Clear
All.

2) Rebuild the program by selecting Project –> Rebuild All.

3) Reload the program by selecting File –> Reload Program.

4) Now run the program by selecting Debug –> Run.

The new profile statistics should appear in the Profile Statistics window, as
in Example 2–13.
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Example 2–13. Profile Statistics

Location               Count  Average  Total  Maximum  Minimum
lesson_c.c line 27         1   5020.0   5020     5020     5020
lesson_c.c line 36         1     60.0     60       60       60
lesson1_c.c line 37        1     60.0     60       60       60
lesson2_c.c line 39        1     60.0     60       60       60
lesson3_c.c line 44        1     60.0     60       60       60
lesson1_c.c line 27        1     12.0     12       12       12
lesson2_c.c line 29        1     12.0     12       12       12
lesson3_c.c line 35        1     12.0     12       12       12

This is quite a performance improvement. The compiler automatically extracts
and acts upon all the information that we passed in Lessons 1 to 3. Even the
original untouched tutor1 is 100% optimized by discounting memory depen-
dencies, unrolling, and performing packed data optimization.

Table 2–4. Status Update: Tutorial example lesson_c lesson1_c lesson2_c lesson3_c

Tutorial Example Lesson_c Lesson1_c Lesson2_c Lesson3_c

Potential pointer aliasing info (discussed in Les-
son 1)

� � � �

Loop count info – minimum trip count (discussed
in Lesson 2)

� � � �

Loop count info – max trip count factor (dis-
cussed in Lesson 2)

� � � �

Alignment info – xptr & yptr aligned on a word
boundary (discussed in Lesson 3)

� � � �

Cycles per iteration (discussed in Lesson 1–3) 10 2 1.5 1

Cycles per iteration with program level optimiza-
tion (discussed in Lesson 4)

1 1 1 1

This tutorial has shown you that a lot can be accomplished by both tuning your
C code and using program level optimization. Many different types of tuning
optimizations can be done in addition to what was presented here.

We recommend you use Appendix A, Feedback Solutions, when tuning your
code to get “how to” answers on all of your optimizing C questions. You can
also use the Feedback Solutions Appendix as a tool during development. We
believe this offers a significant advantage to TI customers and we plan on con-
tinuing to drive a more developer–friendly environment in our future releases.
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2.6 Lesson 5: Writing Linear Assembly

When the compiler does not fully exploit the potential of the ’C6000 architec-
ture, you may be able to get better performance by writing your loop in linear
assembly. Linear assembly is the input for the assembly optimizer.

Linear assembly is similar to regular ’C6000 assembly code in that you use
’C6000 instructions to write your code. With linear assembly, however, you do
not need to specify all of the information that you need to specify in regular
’C6000 assembly code. With linear assembly code, you have the option of
specifying the information or letting the assembly optimizer specify it for you.
Here is the information that you do not need to specify in linear assembly code:

� Parallel instructions
� Pipeline latency
� Register usage
� Which functional unit is being used

If you choose not to specify these things, the assembly optimizer determines
the information that you do not include, based on the information that it has
about your code. As with other code generation tools, you might need to modify
your linear assembly code until you are satisfied with its performance. When
you do this, you will probably want to add more detail to your linear assembly.
For example, you might want to specify which functional unit should be used.

Before you use the assembly optimizer, you need to know the following things
about how it works:

� A linear assembly file must be specified with a .sa extension.

� Linear assembly code should include the .cproc  and .endproc  directives.
The .cproc and .endproc directives delimit a section of your code that you
want the assembly optimizer to optimize. Use .cproc at the beginning of
the section and .endproc at the end of the section. In this way, you can set
off sections of your assembly code that you want to be optimized, like pro-
cedures or functions.

� Linear assembly code may include a .reg  directive. The .reg directive al-
lows you to use descriptive names for values that will be stored in regis-
ters. When you use .reg, the assembly optimizer chooses a register whose
use agrees with the functional units chosen for the instructions that oper-
ate on the value.

� Linear assembly code may include a .trip  directive. The .trip directive
specifies the value of the trip count. The trip count indicates how many
times a loop will iterate.
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Let’s look at a new example, iircas4, which will show the benefit of using linear
assembly. The compiler does not not optimally partition this loop. Thus, the iir-
cas4 function does not improve with the C modification techniques we saw in
the first portion of the chapter. In order to get the best partition, we must write
the function in partitioned linear assembly.

In order to follow this example in Code Composer Studio, you must open the
workspace, l_tutorial.wks, located in c:\ti\c6000\tutorial\c_tutorial. Build the
program and look at the software pipeline information feedback in the gener-
ated assembly files.

Example 2–14. Using the iircas4 Function in C

void iircas4_1(const int n, const short (* restrict c)[4], int (*d)[2],
               int *y)
{
    int k0, k1, i;
    int y0 = y[0];
    int y1 = y[1];

    _nassert(((int)(c) & 0x3) == 0));

    #pragma MUST_ITERATE(10);

    for (i = 0; i < n; i++)
    {
        k0      = c[i][1] * (d[i][1]>>16) + c[i][0] * (d[i][0]>>16) + y0;
        y0      = c[i][3] * (d[i][1]>>16) + c[i][2] * (d[i][0]>>16) + k0;
        k1      = c[i][1] * (d[i][0]>>16) + c[i][0] * (k0>>16) + y1;
        y1      = c[i][3] * (d[i][0]>>16) + c[i][2] * (k0>>16) + k1;

        d[i][1] = k0;
        d[i][0] = k1;
    }

    y[0] = y0;
    y[1] = y1;
}

Example 2–15 shows the assembly output from Example 2–14
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Example 2–15. Software Pipelining Feedback From the iircas4 C Code

;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Known Minimum Trip Count         : 10
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 2
;*      Unpartitioned Resource Bound     : 4
;*      Partitioned Resource Bound(*)    : 5
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     1        0
;*      .D units                     2        4
;*      .M units                     4        4
;*      .X cross paths               5*       3
;*      .T address paths             2        4
;*      Long read paths              1        1
;*      Long write paths             0        0
;*      Logical  ops (.LS)           2        1    (.L or .S unit)
;*      Addition ops (.LSD)          4        3    (.L or .S or .D unit)
;*      Bound(.L .S .LS)             2        1
;*      Bound(.L .S .D .LS .LSD)     3        3
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 5  Schedule found with 4 iterations in parallel
;*      done
;*
;*      Epilog not entirely removed
;*      Collapsed epilog stages     : 2
;*
;*      Prolog not removed
;*      Collapsed prolog stages     : 0
;*
;*      Minimum required memory pad : 16 bytes
;*
;*      Minimum safe trip count     : 2
;*
;*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

From the feedback in the generated .asm file, we can see that the compiler
generated a suboptimal partition. Partitioning is placing operations and oper-
ands on the A side or B side. We can see that the Unpartioned Resource
Bound is 4 while the Partitioned Resource Bound is 5. When the Partitioned
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Resource Bound is higher, this usually means we can make a better partition
by writing the code in linear assembly.

Notice that there are 5 cross path reads on the A side and only 3 on the B side.
We would like 4 cross path reads on the A side and 4 cross path reads on the
B side.  This would allow us to schedule at an iteration interval (ii) of 4 instead
of the current ii of 5.  Example 2–16 shows how to rewrite the iircas4 ( ) function
Using Linear Assembly.



Lesson 5: Writing Linear Assembly

2-29Compiler Optimization Tutorial

Example 2–16. Rewriting the iircas4 ( ) Function in Linear Assembly

        .def    _iircas4_sa

_iircas4_sa:    .cproc  AI,C,BD,AY

        .no_mdep

        .reg    BD0,BD1,AA,AB,AJ0,AF0,AE0,AG0,AH0,AY0,AK0,AM0,BD00
        .reg    BA2,BB2,BJ1,BF1,BE1,BG1,BH1,BY1,BK1,BM1

        LDW     .D2     *+AY[0],AY0
        LDW     .D2     *+AY[1],BY1

        .mptr   C,  bank+0, 8
        .mptr   BD, bank+4, 8

LOOP:   .trip   10
        LDW     .D2T1   *C++, AA        ; a0 = c[i][0], a1 = c[i][1]
        LDW     .D2T1   *C++, AB        ; b0 = c[i][2], b1 = c[i][3]
        LDW     .D1T2   *BD[0], BD0     ; d0 = d[i][0]
        LDW     .D1T2   *BD[1], BD1     ; d1 = d[i][1]

        MPYH    .1      BD1, AA, AE0    ; e0 = (d1 >> 16) * a1
        MPYHL   .1      BD0, AA, AJ0    ; j0 = (d0 >> 16) * a0
        MPYH    .1      BD1, AB, AG0    ; g0 = (d1 >> 16) * b1
        MPYHL   .1      BD0, AB, AF0    ; f0 = (d0 >> 16) * b0

        ADD     .1      AJ0, AE0, AH0   ; h0 = j0 + e0
        ADD     .1      AH0, AY0, AK0   ; k0 = h0 + y0
        ADD     .1      AF0, AG0, AM0   ; m0 = f0 + g0
        ADD     .1      AM0, AK0, AY0   ; y0 = m0 + k0

        MV      .2      AA,BA2
        MV      .2      AB,BB2
        MV      .2      BD0,BD00
        STW     .D1T1   AK0, *BD[1]     ; d[i][1] = k0

        MPYH    .2      BD00, BA2, BE1  ; e1 = (d0 >> 16) * a1
        MPYHL   .2      AK0, BA2, BJ1   ; j1 = (k0 >> 16) * a0
        MPYH    .2      BD00, BB2, BG1  ; g1 = (d0 >> 16) * b1
        MPYHL   .2      AK0, BB2, BF1   ; f1 = (k0 >> 16) * b0

        ADD     .2      BJ1, BY1, BH1   ; h1 = j1 + y1
        ADD     .2      BH1, BE1, BK1   ; k1 = h1 + e1
        ADD     .2      BF1, BG1, BM1   ; m1 = f1 + g1
        ADD     .2      BM1, BK1, BY1   ; y1 = m1 + k1

        STW     .D1T2   BK1, *BD++[2]   ; d[i][0] = k1

        SUB     .1      AI,1,AI         ; i––
[AI]    B       .1      LOOP            ; for

        STW     .D2T1   AY0,*+AY[0]
        STW     .D2T2   BY1,*+AY[1]

        .endproc
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The following example shows the software pipeline feedback from
Example 2–16.

Example 2–17. Software Pipeline Feedback from Linear Assembly

;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Loop label : LOOP
;*      Known Minimum Trip Count         : 10
;*      Known Max Trip Count Factor      : 1
;*      Loop Carried Dependency Bound(^) : 3
;*      Unpartitioned Resource Bound     : 4
;*      Partitioned Resource Bound(*)    : 4
;*      Resource Partition:
;*                                A–side   B–side
;*      .L units                     0        0
;*      .S units                     1        0
;*      .D units                     4*       2
;*      .M units                     4*       4*
;*      .X cross paths               4*       4*
;*      .T address paths             3        3
;*      Long read paths              1        1
;*      Long write paths             0        0
;*      Logical  ops (.LS)           0        2    (.L or .S unit)
;*      Addition ops (.LSD)          5        5    (.L or .S or .D unit)
;*      Bound(.L .S .LS)             1        1
;*      Bound(.L .S .D .LS .LSD)     4*       3
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 4  Schedule found with 5 iterations in parallel
;*      done
;*
;*      Epilog not entirely removed
;*      Collapsed epilog stages     : 3
;*
;*      Prolog not removed
;*      Collapsed prolog stages     : 0
;*
;*      Minimum required memory pad : 24 bytes
;*
;*      Minimum safe trip count     : 2
;*
;*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*

Notice in Example 2–16 that each instruction is manually partitioned. From the
software pipeline feedback information in Example 2–17, you can see that a
software pipeline schedule is found at ii = 4.  This is a result of rewriting the
iircas4 ( ) function in linear assembly, as shown in Example 2–16.
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Optimizing C/C++ Code

You can maximize C/C++ performance by using compiler options, intrinsics,
and code transformations. This chapter discusses the following topics:

� The compiler and its options
� Intrinsics
� Software pipelining
� Loop unrolling
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3.1 Writing C/C++ Code

This chapter shows you how to analyze and tailor your code to be sure you are
getting the best performance from the ’C6000 architecture.

3.1.1 Tips on Data Types

Give careful consideration to the data type size when writing your code. The
’C6000 compiler defines a size for each data type (signed and unsigned):

� char 8 bits 
� short 16 bits 
� int 32 bits 
� long 40 bits
� float 32 bits
� double 64 bits

Based on the size of each data type, follow these guidelines when writing C
code:

� Avoid code that assumes that int and long types are the same size, be-
cause the ’C6000 compiler uses long values for 40-bit operations.

� Use the short data type for fixed-point multiplication inputs whenever pos-
sible because this data type provides the most efficient use of the 16-bit
multiplier in the ’C6000 (1 cycle for “short * short” versus 5 cycles for “int
*  int”).

� Use int or unsigned int types for loop counters, rather than short or un-
signed short data types, to avoid unnecessary sign-extension instructions.

� When using floating-point instructions on a floating-point device such as
the ’C6700, use the –mv6700 compiler switch so the code generated will
use the device’s floating-point hardware instead of performing the task
with fixed point hardware.  For example, the RTS floating-point multiply will
be used instead of the MPYSP instruction.

� When using the ’C6400 device, use the –mv6400 compiler switch so the
code generated will use the device’s additional hardware and instructions.
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3.1.2 Analyzing C Code Performance

Use the following techniques to analyze the performance of specific code re-
gions:

� One of the preliminary measures of code is the time it takes the code to
run. Use the clock( ) and printf( ) functions in C/C++ to time and display
the performance of specific code regions. You can use the stand-alone
simulator (load6x) to run the code for this purpose. Remember to subtract
out the overhead of calling the clock( ) function.

� Use the profile mode of the stand-alone simulator.  This can be done by
compiling your code with the –mg option and executing load6x with the –g
option. The profile results will be stored in a file with the .vaa extension.
Refer to the TMS320C6000 Optimizing C/C++ Compiler User’s Guide for
more information.

� Enable the clock and use profile points and the RUN command in the Code
Composer debugger to track the number of CPU clock cycles consumed
by a particular section of code.  Use “View Statistics” to view the number
of cycles consumed.

� The critical performance areas in your code are most often loops.  The
easiest way to optimize a loop is by extracting it into a separate file that
can be rewritten, recompiled, and run with the stand-alone simulator
(load6x).

As you use the techniques described in this chapter to optimize your C/C++
code, you can then evaluate the performance results by running the code and
looking at the instructions generated by the compiler.
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3.2 Compiling C/C++ Code

The ’C6000 compiler offers high-level language support by transforming your
C/C++ code into more efficient assembly language source code. The compiler
tools include a shell program (cl6x), which you use to compile, assembly opti-
mize, assemble, and link programs in a single step. To invoke the compiler
shell, enter:

cl6x [options] [filenames] [–z [linker options] [object files]]

For a complete description of the C/C++ compiler and the options discussed
in this chapter, see the TMS320C6000 Optimizing C/C++ Compiler User’s
Guide (SPRU187).

3.2.1 Compiler Options

Options control the operation of the compiler. This section introduces you to
the recommendd options for performance, optimization, and code size. Con-
siderations of optimization versus performance are also discussed.

The options described in Table 3–1 are obsolete or intended for debugging,
and could potentially decrease performance and increase code size. Avoid us-
ing these options with performance critical code.

Table 3–1. Compiler Options to Avoid on Performance Critical Code

Option Description

–g/–s/
–ss/–mg

These options limit the amount of optimization across C state-
ments leading to larger code size and slower execution.

–mu Disables software pipelining for debugging. Use –ms2/–ms3
instead to reduce code size which will disable software pipelin-
ing among other code size optimizations.

–o1/–o0 Always use –o2/–o3 to maximize compiler analysis and opti-
mization. Use code size flags (–msn) to tradeoff between per-
formance and code size.

–mz Obsolete. On pre–3.00 tools, this option may have improved
your code, but with 3.00+ compilers, this option will decrease
performance and increase code size.
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The options in Table 3–2 can improve performance but require certain charac-
teristics to be true, and are described below.

Table 3–2. Compiler Options for Performance

Option Description

–mh <n> Allows speculative execution. The appropriate amount of pad-
ding must be available in data memory to insure correct execu-
tion. This is normally not a problem but must be adhered to.

–mi<n> Describes the interrupt threshold to the compiler. If you know
that NO interrupts will occur in your code, the compiler can
avoid enabling and disabling interrupts before and after soft-
ware pipelined loops for a code size and performance improve-
ment. In addition, there is potential for performance improve-
ment where interrupt registers may be utilized in high register
presure loops.(See section 7.4.)

–ms0/–ms1 Optimizes primarily for performance, and secondly for code
size. Should be used on all but the most performance critical
routines.

–mt Enables the compiler to use assumptions that allow it to be
more aggressive with certain optimizations. When used on lin-
ear assembly files, it acts like a .no_mdep directive that has
been defined for those linear assembly files. (See section 6.2)

–o3† Represents the highest level of optimization available. Various
loop optimizations are performed, such as software pipelining,
unrolling, and SIMD. Various file level characteristics are also
used to improve performance.

–oi0 Disables all automatic size–controlled inlining, (which is en-
abled by –o3). User specified inlining of functions is still al-
lowed.

–op2 Specifies that the module contains no functions or variables that
are called or modified from outside the source code provided to
the compiler. This improves variable analysis and allowed as-
sumptions.

–pm‡ Combines source files to perform program–level optimization.

† Although –o3 is preferable, at a minimum use the –o option.
‡ Use the –pm option for as much of your program as possible.



Compiling C/C++ Code

 3-6

The options described in Table 3–3 are recommended for control code, and
will result in smaller code size with minimal performance degradation.

Table 3–3. Compiler Options for Control Code

Option Description

–o3† Represents the highest level of optimization available. Various
loop optimizations are performed, such as software pipelining,
unrolling, and SIMD. Various file level characteristics are also
used to improve performance.

–pm‡ Combines source files to perform program–level optimization.

–op2 Specifies that the module contains no functions or variables that
are called or modified from outside the source code provided to
the compiler. This improves variable analysis and allowed as-
sumptions.

–oi0 Disables all automatic size–controlled inlining, (which is en-
abled by –o3). User specified inlining of functions is still al-
lowed.

–ms2–ms3 Optimizes primarily for code size, and secondly for perfor-
mance.

† Although –o3 is preferable, at a minimum use the –o option.
‡ Use the –pm option for as much of your program as possible.

The options described in Table 3–4 provide information, but do not affect per-
formance or code size.

Table 3–4. Compiler Options for Information

Option Description

–mw Use this option to produce additional compiler feedback. This
option has no performance or code size impact.

–k Keeps the assembly file so that you can inspect and analyze
compiler feedback. This option has no performance or code
size impact.

–mg Enables automatic function level profiling with the loader. Can
result in minor performance degradation around function call
boundaries only.

–s/–ss Interlists C/C++ source or optimizer comments in assembly.
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3.2.2 Memory Dependencies

To maximize the efficiency of your code, the ’C6000 compiler schedules as
many instructions as possible in parallel. To schedule instructions in parallel,
the compiler must determine the relationships, or dependencies, between in-
structions. Dependency means that one instruction must occur before anoth-
er, for example, a variable must be loaded from memory before it can be used.
Because only independent instructions can execute in parallel, dependencies
inhibit parallelism.

� If the compiler cannot determine that two instructions are independent (for
example, b does not depend on a), it assumes a dependency and sched-
ules the two instructions sequentially accounting for any latencies needed
to complete the first instruction.

� If the compiler can determine that two instructions are independent of one
another, it can schedule them in parallel.

Often it is difficult for the compiler to determine if instructions that access
memory are independent. The following techniques help the compiler deter-
mine which instructions are independent:

� Use the const keyword to indicate which objects are not changed by a
function.

� Use the restrict keyword to indicate that a pointer is the only pointer that
can point to a particular object in the scope in which the pointer is declared.

� Use the –pm (program-level optimization) option, which gives the compiler
global access to the whole program or module and allows it to be more
aggressive in ruling out dependencies.

� Use the –mt option, which allows the compiler to use assumptions that al-
low it to eliminate dependencies. Remember, using the –mt option on lin-
ear assembly code is equivalent to adding the .no_mdep directive to the
linear assembly source file.  Specific memory dependencies should be
specified with the .mdep directive.  For more information see section 4.4,
Assembly Optimizer Directives in the TMS320C6000 Optimizing C/C++
Compiler User’s Guide.



Compiling C/C++ Code

 3-8

To illustrate the concept of memory dependencies, it is helpful to look at the
algorithm code in a dependency graph. Example 3–1 shows the C code for a
basic vector sum. Figure 3–1 shows the dependency graph for this basic vec-
tor sum. (For more information, see section 6.3.4, Drawing a Dependency
Graph, on page 6-11.)

Example 3–1. Basic Vector Sum

void vecsum(short *sum, short *in1, short *in2, unsigned int N)
{
  int i;
 
  for (i = 0; i < N; i++)
    sum[i] = in1[i] + in2[i];

}

Figure 3–1. Dependency Graph for Vector Sum #1
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The dependency graph in Figure 3–1 shows that:

� The paths from sum[i] back to in1[i] and in2[i] indicate that writing to sum
may have an effect on the memory pointed to by either in1 or in2.

� A read from in1 or in2 cannot begin until the write to sum finishes, which
creates an aliasing problem. Aliasing occurs when two pointers can point
to the same memory location. For example, if vecsum( ) is called in a pro-
gram with the following statements, in1 and sum alias each other because
they both point to the same memory location:

short a[10], b[10];
vecsum(a, a, b, 10);

3.2.2.1 The const Keyword

In Figure 3–1, the reads from in1 and in2 finish before the write to sum within
a single iteration. However, the ’C6000 compiler uses software pipelining to
execute multiple iterations in parallel and, therefore, must determine memory
dependencies that exist across loop iterations.

To help the compiler, you can qualify an object with the const keyword, which
indicates that a variable or the memory referenced by a variable will not be
changed, but will remain constant. It is good coding practice to use the const
keyword wherever you can, because it is a simple way to increase the perfor-
mance and robustness of your code.
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Example 3–2 shows the vecsum( ) example rewritten with the const keyword
to indicate that the write to sum never changes the memory referenced by in1
and in2. Figure 3–2 shows the revised dependency graph for the code in the
inner loop.

Example 3–2. Vector Sum With const Keywords

void vecsum2(short *sum, const short *in1, const short *in2, unsigned int N)

{
  int i;
 
  for (i = 0; i < N; i++)
    sum[i] = in1[i] + in2[i];
}

Figure 3–2. Dependency Graph for Vector Sum #2
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Example 3–3 shows the output of the compiler for the vector sum in
Example 3–2. The compiler finds better schedules when dependency paths
are eliminated between instructions. For this loop, the compiler found a soft-
ware pipeline with a 2-cycle kernel, compared with seven cycles for the pre-
vious loop. (The kernel is the body of a pipelined loop where all instructions
execute in parallel.)

Example 3–3. Compiler Output for Vector Sum Code

L2:    ; PIPED LOOP KERNEL

           ADD     .L1X    B5,A3,A5          ; |6| 
|| [ B0]   B       .S2     L2                ; @@|6| 
|| [ A1]   LDH     .D1T1   *A4++,A3          ; @@@|6| 

   [ A2]   SUB     .L1     A2,1,A2           ; 
|| [ A1]   SUB     .S1     A1,1,A1           ; 
|| [!A2]   STH     .D1T1   A5,*A0++          ; |6| 
|| [ B0]   SUB     .L2     B0,1,B0           ; @@@|6| 
|| [ A1]   LDH     .D2T2   *B4++,B5          ; @@@|6|

For basic information on assembly code, see Chapter 4, Structure of Assem-
bly Code.

The compiler has collapsed the prolog and epilog code for the loop into the ker-
nel as conditional code. That is why the LDH and STH instructions are execut-
ed conditionally. For more information on understanding loop prologs, kernels,
and epilogs, refer to Chapter 6.

Caution 

Do not use the const keyword if two pointers point to the same
object in memory and one of those pointers modifies memory.
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Do not use the const keyword with code such as listed in Example 3–4. By us-
ing the const keyword in Example 3–4, you are telling the compiler that it is le-
gal to write to any location pointed to by a before reading the location pointed
to by b. This can cause an incorrect program because both a and b point to
the same object —array.

Example 3–4. Incorrect Use of the const Keyword

void func (short *a, const short *b) /*Bad!! */
{

int i;
for (i = 11; i < 44; i++) *(––a) = *(––b);

}
void main ()
{

short array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42,
43, 44};

short *ptr1, *ptr2;

ptr2 = array + 44;
ptr1 = ptr2 – 11;

func(ptr2, ptr1); /*Bad!! */
}
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3.2.2.2 The Restrict Keyword

To help the compiler determine memory dependencies, you can qualify a
pointer, reference, or array with the restrict keyword. The restrict keyword is
a type qualifier that may be applied to pointers, references, and arrays. Its use
represents a guarantee by the programmer that within the scope of the pointer
declaration, the object pointed to can be accessed only by that pointer. Any
violation of this guarantee renders the program undefined. This practice helps
the compiler optimize certain sections of code because aliasing information
can be more easily determined.

In the example that follows, you can use the restrict keyword to tell the compiler
that a and b never point to the same object in foo (and the objects’ memory that
foo accesses does not overlap).

Example 3–5. Use of the Restrict Type Qualifier With Pointers

void foo(int * restrict a, int * restrict b)
{
  /* foo’s code here */
}

This example is a use of the restrict keyword when passing arrays to a function.
Here, the arrays c and d should not overlap, nor should c and d point to the
same array.

Example 3–6. Use of the Restrict Type Qualifier With Arrays

void func1(int c[restrict], int d[restrict])
{
  int i;

  for(i = 0; i < 64; i++)
  {
    c[i] += d[i];
    d[i] += 1;
  }
}
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3.2.2.3 Performing Program-Level Optimization (–pm Option)

You can specify program-level optimization by using the –pm option with the
–o3 option. With program-level optimization, all your source files are compiled
into one intermediate file called a module. The module moves to the optimiza-
tion and code generation passes of the compiler. Because the compiler has
access to the entire program, it performs several optimizations that are rarely
applied during file-level optimization:

� If a particular argument in a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead
of the argument.

� If a return value of a function is never used, the compiler deletes the return
code in the function.

� If a function is not called, directly or indirectly, the compiler removes the
function.

Also, using the –pm option can lead to better schedules for your loops.  If the
number of iterations of a loop is determined by a value passed into the function,
and the compiler can determine what that value is from the caller, then the
compiler will have more information about the minimum trip count of the loop
leading to a better resulting schedule.

3.2.2.4 The –mt Option

Another way to eliminate memory dependencies is to use the –mt option,
which allows the compiler to use assumptions that can eliminate memory de-
pendency paths. For example, if you use the –mt option when compiling the
code in Example 3–1, the compiler uses the assumption that that in1 and in2
do not alias memory pointed to by sum and, therefore, eliminates memory de-
pendencies among the instructions that access those variables.

You would get the same loop kernel listed in Example 3–3. If your code does
not follow the assumptions generated by the –mt option, you can get incorrect
results.  For more information on the –mt option refer to section 3.6.2 in the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide.
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3.3 Profiling Your Code

In large applications, it makes sense to optimize the most important sections
of code first. You can use the information generated by profiling options to get
started. You can use several different methods to profile your code. These
methods are described below.

3.3.1 Using the Standalone Simulator (load6x) to Profile

There are two methods to using the standalone simulator (load6x) for profiling.

� If you are interested in just a profile of all of the functions in your applica-
tion, you can use the –g option in load6x.

� If you are interested in just profiling the cycle count of one or two functions,
or if you are interested in a region of code inside a particular function, you
can use calls to the clock( ) function (supported by load6x) to time those
particular functions or regions of code.

3.3.1.1 Using the –g Option to Profile on load6x

Invoking load6x with the –g option runs the standalone simulator in profiling
mode. Source files must be compiled with the –mg profiling option for profiling
to work on the standalone simulator. The profile results are stored in a file
called by the same name as the .out file, but with the .vaa extension.

If you used the –mg profiling option when compiling and linking ”example.out”,
use the –g option to create a file in which you can view the profiling results. For
example, enter the following on your command line:

load6x –g example.out

Now, you can view the file ”example.vaa” to see the results of the profile ses-
sion created with the –mg option on the .out file.

Your new file, ”example.vaa” should have been created in the same directory
as the .out file. You can edit the .vaa file with a text editor. You should see some-
thing like this:

Program Name: example.out
Start Address: 00007980 main, at line 1, ”demo1.c”
Stop Address: 00007860 exit
Run Cycles: 3339
Profile Cycles: 3339
BP Hits: 11
*******************************************************
Area Name   Count Inclusive Incl–Max Exclusive Excl–Max

CF iir1( ) 1 236 236 236 236
CF vec_mpy1( ) 1 248 248 248 248
CF mac1( ) 1 168 168 168 168
CF main( ) 1 3333 3333 40 40
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Count  represents the number of times each function was called and entered.
Inclusive  represents the total cycle time spent inside that function including
calls to other functions. Incl–Max  (Inclusive Max) represents the longest time
spent inside that function during one call. Exclusive  and Excl–Max  are the
same as Inclusive and Incl–Max except that time spent in calls to other func-
tions inside that function have been removed.

3.3.1.2 Using the Clock( ) Function to Profile

To get cycle count information for a function or region of code with the standa-
lone simulator, embed the clock( ) function in your C code. The following exam-
ple demonstrates how to include the clock() function in your C code.
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Example 3–7. Including the clock( ) Function

#include <stdio.h>
#include <time.h>

main(int argc, char *argv[]) {
const short coefs[150];
short optr[150];
short state[2];
const short a[150];
const short b[150];
int c = 0;
int dotp[1] = {0};
int sum= 0;
short y[150];
short scalar = 3345;
const short x[150];
clock_t start, stop, overhead;

start = clock();
stop = clock();
overhead = stop – start;

start = clock();
sum = mac1(a, b, c, dotp);
stop = clock();
printf(”mac1 cycles: %d\n”, stop – start – overhead);

start = clock();
vec_mpy1(y, x, scalar);
stop = clock();
printf(”vec_mpy1 cycles: %d\n”, stop – start – over-
head);

start = clock();
iir1(coefs, x, optr, state);
stop = clock();
printf(”iir1 cycles: %d\n”, stop – start – overhead);
} 
Note: When using this method, remember to calculate the
overhead and include the appropriate header files.

3.3.2 Profiling in Code Composer Studio

The Compiler Optimization Tutorial, Chapter 2, describes how profiling is
achieved with CCS. The introduction provides you with an example of how to
set probe points and provides you with example code to walk through.
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3.4 Refining C/C++ Code

You can realize substantial gains from the performance of your C/C++ code
by refining your code in the following areas:

� Using intrinsics to replace complicated C/C++ code

� Using word access to operate on 16-bit data stored in the high and low
parts of a 32-bit register

� Software pipelining the instructions manually

� Using double access to operate on 32-bit data stored in a 64-bit register
pair (’C64x and ’C67x only)

3.4.1 Using Intrinsics

The ’C6000 compiler provides intrinsics, special functions that map directly to
inlined ’C62x/’C64x/’C67x instructions, to optimize your C/C++ code quickly.
All instructions that are not easily expressed in C/C++ code are supported as
intrinsics. Intrinsics are specified with a leading underscore (_) and are ac-
cessed by calling them as you call a function.

For example, saturated addition can be expressed in C/C++ code only by writ-
ing a multicycle function, such as the one in Example 3–8.

Example 3–8. Saturated Add Without Intrinsics

int sadd(int a, int b)
{
  int result;
 
  result = a + b;
 
  if (((a ^ b) & 0x80000000) == 0)
  {
    if ((result ^ a) & 0x80000000)
    {
      result = (a < 0) ? 0x80000000 : 0x7fffffff;
    }
  }
  return (result);
}

This complicated code can be replaced by the _sadd( ) intrinsic, which results
in a single ’C6x instruction (see Example 3–9).

Example 3–9. Saturated Add With Intrinsics

result = _sadd(a,b);



Refining C/C++ Code

3-19Optimizing C/C++ Code

Table 3–5 lists the ’C6000 intrinsics. For more information on using intrinsics,
see the TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics 

C Compiler Intrinsic
Assembly
Instruction Description Device

int _abs( int src2);
int_labs( long src2);

ABS Returns the saturated absolute value of
src2.

int _abs2  (int src); ABS2 Calculates the absolute value for each
16–bit value.

’C64x

int _add2( int src1, int src2); ADD2 Adds the upper and lower halves of src1 to
the upper and lower halves of src2 and re-
turns the result. Any overflow from the low-
er half add will not affect the upper half
add.

int _add4  (int src1, int src2); ADD4 Performs 2s–complement addition to pairs
of packed 8–bit numbers.

’C64x

int _avg2  (int src1, int src2); AVG2 Calculates the average for each pair of
signed 16–bit values.

’C64x

unsigned _avgu4( unsigned, unsigned); AVGU4 Calculates the average for each pair of un-
signed 8–bit values.

’C64x

unsigned _bitc4  (unsigned src); BITC4 For each of the 8–bit quantities in src, the
number of 1 bits is written to the corre-
sponding position in the return value.

’C64x

unsigned _bitr  (unsigned src); BITR Reverses the order of the bits. ’C64x

uint _clr( uint src2, uint csta, uint cstb); CLR Clears the specified field in src2. The be-
ginning and ending bits of the field to be
cleared are specified by csta and cstb, re-
spectively.

unsigned _clrr( uint src1, int src2); CLR Clears the specified field in src2. The be-
ginning and ending bits of the field to be
cleared are specified by the lower 10 bits
of the source register.

int _cmpeq2  (int src1, int src2); CMPEQ2 Performs equality comparisons on each
pair of 16–bit values. Equality results are
packed into the two least–significant bits of
the return value.

’C64x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly
Instruction

int _cmpeq4  (int src1, int src2); CMPEQ4 Performs equality comparisons on each
pair of 8–bit values. Equality results are
packed into the four least–significant bits
of the return value.

’C64x

int _cmpgt2  (int src1, int src2); CMPGT2 Compares each pair of signed 16–bit val-
ues. Results are packed into the two least–
significant bits of the return value.

’C64x

unsigned _cmpgtu4  (unsigned src1, un-
signed src2);

CMPGTU4 Compares each pair of unsigned 8–bit val-
ues. Results are packed into the four
least–significant bits of the return value.

’C64x

unsigned _deal  (unsigned src); DEAL The odd and even bits of src are extracted
into two separate 16–bit values.

’C64x

int _dotp2  (int src1, int src2);
long _ldotp2  (int src1, int src2);

DOTP2
LDOTP2

The product of signed 16–bit values in src1
is added to the product of signed 16–bit
values in src2.

’C64x

int _dotpn2  (int src1, int src2); DOTPN2 The product of signed 16–bit values in src2
is subtracted from the product of signed
16–bit values in src1.

’C64x

int _dotpnrsu2  (int src1, unsigned src2); DOTPNR-
SU2

The product of unsigned 16–bit values in
src2 is subtracted from the product of
signed 16–bit values in src1. 215 is added
and the result is sign shifted right by 16.

’C64x

int _dotprsu2  (int src1, unsigned src2); DOTPR-
SU2

Adds the result of the product of the first
signed pair and the unsigned second pair
of 16–bit values. 215 is added and the re-
sult is sign shifted right by 16.

’C64x

unsigned _dotpu4  (unsigned src1, un-
signed src2);
int _dotpsu4  (int src1, unsigned src2);

DOTPU4
DOTPSU4

For each pair of 8–bit values in src1 and
src2, the 8–bit value from src1 is multiplied
with the 8–bit value from src2. The four
products are summed together.

’C64x

int_dpint( double); DPINT Converts 64-bit double to 32-bit signed in-
teger, using the rounding mode set by the
CSR register.

’C67x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly
Instruction

int _ext(uint src2, uint csta, int cstb); EXT Extracts the specified field in src2, sign-ex-
tended to 32 bits. The extract is performed
by a shift left followed by a signed shift
right; csta and cstb are the shift left and
shift right amounts, respectively.

int _extr( int src2, int src1); EXT Extracts the specified field in src2, sign-ex-
tended to 32 bits. The extract is performed
by a shift left followed by a signed shift
right; csta and cstb are the shift left and
shift right amounts, respectively.

uint _extu( uint src2, uint csta, uint cstb); EXTU Extracts the specified field in src2, zero-
extended to 32 bits. The extract is per-
formed by a shift left followed by a un-
signed shift right; csta and cstb are the
shift left and shift right amounts, respec-
tively.

uint _extur( uint src2, int src1); EXTU Extracts the specified field in src2, zero-
extended to 32 bits. The extract is per-
formed by a shift left followed by a un-
signed shift right; csta and cstb are the
shift left and shift right amounts, respec-
tively.

uint _ftoi( float); Reinterprets the bits in the float as an un-
signed integer.
(Ex: _ftoi(1.0) == 1065353216U)

’C67x

int _gmpy4  (int src1, int src2); GMPY4 Performs the galois field multiply on 4 val-
ues in src1 with 4 parallel values in src2.
The 4 products are packed into the return
value.

’C64x

uint _hi(double); Returns the high 32 bits of a double as an
integer.

’C67x,
’C64x

double _itod( uint, uint); Creates a new double register pair from
two unsigned integers.

’C67x,
’C64x

float _itof( uint); Reinterprets the bits in the unsigned inte-
ger as a float.
(Ex: _itof(0x3f800000) == 1.0)

’C67x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly
Instruction

double & _memd8( void * ptr); LDNDW/
STNDW

Allows unaligned loads and stores of 8 by-
tes to memory.

’C64x

int & _mem4(void * ptr); LDNW/
STNW

Allows unaligned loads and stores of 4 by-
tes to memory.

’C64x

long _ldotp2  (int src1, int src2);
int _dotp2  (int src1, int src2);

LDOTP2
DOTP2

The product of signed 16–bit values in src1
is added to the product of signed 16–bit
values in src2.

’C64x

uint _lmbd( uint src1, uint src2); LMBD Searches for a leftmost 1 or 0 of src2 deter-
mined by the LSB of src1. Returns the
number of bits up to the bit change.

uint _lo(double); Returns the low (even) register of a double
register pair as an integer.

’C67x,
’C64x

int _max2  (int src1, int src2);
int _min2 ( int src1, int src2);
unsigned _maxu4  (unsigned src1, un-
signed src2);
unsigned _minu4  (unsigned src1, un-
signed src2);

MAX2
MIN2
MAXU4
MINU4

Places the larger/smaller of each pair of
values in the corresponding position in the
return value. Values can be 16–bit signed
or 8–bit unsigned.

’C64x

double _mpy2  (int src1, int src2); MPY2 Returns the products of the lower and
higher 16–bit values in src1 and src2.

’C64x

double _mpyhi  (int src1, int src2);
double _mpyli  (int src1, int src2);

MPYHI
MPYLI

Produces a 16 by 32 multiply. The result is
placed into the lower 48 bits of the returned
double. Can use the upper or lower 16 bits
of src1.

’C64x

int _mpyhir  (int src1, int src2);
int_mpylir ( int src1, int src2);

MPYHIR
MPYLIR

Produces a signed 16 by 32 multiply. The
result is shifted right by 15 bits. Can use
the upper or lower 16 bits of src1.

’C64x

double _mpysu4  (int src1, unsigned
src2);
double _mpyu4  (unsigned src1, un-
signed src2);

MPYSU4
MPYU4

For each 8–bit quantity in src1 and src2,
performs an 8–bit by 8–bit multiply. The
four 16–bit results are packed into a
double. The results can be signed or un-
signed.

’C64x

int _mpy( int src1, int src2);
int _mpyus( uint src1, int src2);
int _mpysu( int src1, uint src2);
uint _mpyu( uint src1, uint src2);

MPY
MPYUS
MPYSU
MPYU

Multiplies the 16 LSBs of src1 by the 16
LSBs of src2 and returns the result. Values
can be signed or unsigned.

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly
Instruction

int _mpyh( int src1, int src2);
int _mpyhus( uint src1, int src2);
int _mpyhsu( int src1, uint src2);
uint _mpyhu( uint src1, uint src2);

MPYH
MPYHUS
MPYHSU
MPYHU

Multiplies the 16 MSBs of src1 by the 16
MSBs of src2 and returns the result. Val-
ues can be signed or unsigned.

int _mpyhl( int src1, int src2);
int _mpyhuls( uint src1, int src2);
int _mpyhslu( int src1, uint src2);
uint _mpyhlu( uint src1, uint src2);

MPYHL
MPYHULS
MPYHSLU
MPYHLU

Multiplies the 16 MSBs of src1 by the 16
LSBs of src2 and returns the result. Values
can be signed or unsigned.

int _mpylh( int src1, int src2);
int _mpyluhs( uint src1, int src2);
int _mpylshu( int src1, uint src2);
uint _mpylhu( uint src1, uint src2);

MPYLH
MPYLUHS
MPYLSHU
MPYLHU

Multiplies the 16 LSBs of src1 by the 16
MSBs of src2 and returns the result. Val-
ues can be signed or unsigned.

int _mvd  (int src); MVD Moves the data from the src to the return
value over 4 cycles using the multipler
pipeline.

’C64x

void _nassert( int); Generates no code. Tells the optimizer
that the expression declared with the
assert function is true. This gives a hint to
the compiler as to what optimizations
might be valid (trip count information for
software pipelined loops and about using
word-wide optimizations).

uint _norm( int src2);
uint lnorm( long src2);

NORM Returns the number of bits up to the first
nonredundant sign bit of src2uint _lnorm( long src2); nonredundant sign bit of src2.

unsigned _pack2  (unsigned src1, un-
signed src2);
unsigned _packh2  (unsigned src1, un-
signed src2);

PACK2
PACKH2

The lower/upper half–words of src1 and
src2 are placed in the return value.

’C64x

unsigned _packh4  (unsigned src1, un-
signed src2);
unsigned _packl4  (unsigned src1, un-
signed src2);

PACKH4
PACKL4

Packs alternate bytes into return value.
Can pack high or low bytes.

’C64x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly
Instruction

unsigned _packhl2  (unsigned src1, un-
signed src2);
unsigned _packlh2  (unsigned src1, un-
signed src2);

PACKHL2
PACKLH2

The upper/lower half–word of src1 is
placed in the upper half–word the return
value. The lower/upper half–word of src2
is placed in the lower half–word the return
value.

’C64x

double _rcpdp( double); RCPDP Computes the approximate 64-bit double
reciprocal.

’C67x

float _rcpsp( float); RCPSP Computes the approximate 64-bit double
reciprocal.

’C67x

unsigned _rotl  (unsigned src1, unsigned
src2);

ROTL Rotates src2 to the left by the amount in
src1.

’C64x

double _rsqrdp( double src); RSQRDP Computes the approximate 64-bit double
reciprocal square root.

’C67x

float _rsqrsp( float src); RSQRSP Computes the approximate 32-bit float re-
ciprocal square root.

’C67x

int _sadd( int src1, int src2);
long lsadd( int src1 long src2):

SADD Adds src1 to src2 and saturates the result.
Returns the resultlong _lsadd( int src1, long src2): Returns the result.

unsigned _saddu4  (unsigned src1, un-
signed src2);

SADDU4 Performs saturated addition between
pairs of 8-bit unsigned values in src1 and
src2.

’C64x

int _sadd2  (int src1, int src2);
int _saddus2  (unsigned src1, int src2);

SADD2
SADDUS2

Performs saturated addition between
pairs of 16–bit values in src1 and src2.
Src1 values can be signed or unsigned.

’C64x

int _sat( long src2); SAT Converts a 40-bit value to an 32-bit value
and saturates if necessary.

uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all 1s and
returns the src2 value. The beginning and
ending bits of the field to be set are speci-
fied by csta and cstb, respectively.

unsigned _setr( unsigned, int); SET Sets the specified field in src2 to all 1s and
returns the src2 value. The beginning and
ending bits of the field to be set are speci-
fied by the lower ten bits of the source reg-
ister.

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly
Instruction

unsigned _shfl  (unsigned src); SHFL The lower 16 bits of src are placed in the
even bit positions, and the upper 16 bits of
src are placed in the odd bit positions.

’C64x

unsigned _shlmb  (unsigned src1, un-
signed src2);
unsigned _shrmb  (unsigned src1, un-
signed src2);

SHLMB
SHRMB

Shifts src2 left/right by one byte, and the
most/least significant byte of src1 is
merged into the least/most significant byte
position.

’C64x

int _shr2  (int src1, unsigned src2);
unsigned _shru2  (unsigned src1, un-
signed src2);

SHR2
SHRU2

For each 16-bit quantity in src2, the quanti-
ty is arithmetically or logically shifted right
by src1 number of bits. src2 can contain
signed or unsigned values.

’C64x

int _smpy( int src1, int sr2);
int _smpyh( int src1, int sr2);
int _smpyhl( int src1, int sr2);
int _smpylh( int src1, int sr2);

SMPY
SMPYH
SMPYHL
SMPYLH

Multiplies src1 by src2, left shifts the result
by one, and returns the result. If the result
is 0x80000000, saturates the result to
0x7FFFFFFF.

double _smpy2  (int src1, int src2); SMPY2 Performs 16-bit multiplication between
pairs of signed packed 16-bit values, with
an additional 1 bit left–shift and saturate
into a double result.

’C64x

int _spack2  (int src1, int src2); SPACK2 Two signed 32–bit values are saturated to
16–bit values and packed into the return
value.

’C64x

unsigned _spacku4  (int src1, int src2); SPACKU4 Four signed 16–bit values are saturated to
8–bit values and packed into the return
value.

’C64x

int _spint( float); SPINT Converts 32-bit float to 32-bit signed inte-
ger, using the rounding mode set by the
CSR register.

’C67x

int _sshvl  (int src1, int src2);
int _sshvr  (int src1, int src2);

SSHVL
SSHVR

Shifts src2 to the left/right of src1 bits. Sat-
urates the result if the shifted value is
greater than MAX_INT or less than
MIN_INT

’C64x

uint _sshl( uint src2, uint src1); SSHL Shifts src2 left by the contents of src1, sat-
urates the result to 32 bits, and returns the
result.

Note: Instructions not specified with a device apply to all ’C6000 devices.
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Table 3–5. TMS320C6000 C/C++ Compiler Intrinsics (Continued)

C Compiler Intrinsic DeviceDescription
Assembly
Instruction

int _ssub( int src1, int src2);
long lss b( int src1 long src2):

SSUB Subtracts src2 from src1, saturates the re-
sult size and returns the resultlong _lssub( int src1, long src2): sult size, and returns the result.

uint _subc( uint src1, uint src2); SUBC Conditional subtract divide step.

int _sub2( int src1, int src2); SUB2 Subtracts the upper and lower halves of
src2 from the upper and lower halves of
src1, and returns the result. Any borrowing
from the lower half subtract does not affect
the upper half subtract.

int _sub4  (int src1, int src2); SUB4 Performs 2s–complement subtraction be-
tween pairs of packed 8–bit values.

’C64x

int _subabs4  (int src1, int src2); SUBABS4 Calculates the absolute value of the differ-
ences for each pair of packed 8–bit values.

’C64x

unsigned _swap4  (unsigned src); SWAP4 Exchanges pairs of bytes (an endian
swap) within each 16–bit value.

’C64x

unsigned _unpkhu4  (unsigned src); UNPKHU4 Unpacks the two high unsigned 8–bit val-
ues into unsigned packed 16–bit values.

’C64x

unsigned _unpklu4  (unsigned src); UNPKLU4 Unpacks the two low unsigned 8–bit val-
ues into unsigned packed 16–bit values.

’C64x

unsigned _xpnd2  (unsigned src); XPND2 Bits 1 and 0 of src are replicated to the up-
per and lower halfwords of the result, re-
spectively.

’C64x

unsigned _xpnd4  (unsigned src); XPND4 Bits 3 through 0 are replicated to bytes 3
through 0 of the result.

’C64x

Note: Instructions not specified with a device apply to all ’C6000 devices.
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3.4.2 Using Word Access for Short Data

The ’C6000 has instructions with corresponding intrinsics, such as _add2( ),
_mpyhl( ), _mpylh( ), that operate on 16-bit data stored in the high and low
parts of a 32-bit register. When operating on a stream of short data, you can
use word (int) accesses to read two short values at a time, and then use ’C6x
intrinsics to operate on the data. For example, rewriting the vecsum( ) function
to use word accesses (as in Example 3–10) doubles the performance of the
loop. See section 6.4, Loading Two Data Values with LDW, on page 6-19 for
more information. This type of optimization is called SIMD (Single Instruction
Multiple Data).

Example 3–10. Vector Sum With const Keywords, _nassert, Word Reads

void vecsum4(short *sum, const short *in1, const short *in2, unsigned int N)
{
  int i;
 
   const int *i_in1 = (const int *)in1;
   const int *i_in2 = (const int *)in2;
         int *i_sum = (int *)sum;
 
  #pragma MUST_ITERATE (10);
 
  for (i = 0; i < (N/2); i++)
    i_sum[i] = _add2(i_in1[i], i_in2[i]);
}

Note:

The MUST_ITERATE intrinsic tells the compiler that the following loop will
iterate at least the specified number of times.

This transformation assumes that the pointers sum, in1, and in2 can be cast
to int *, which means that they must point to word-aligned data. By default, the
compiler aligns all short arrays on word boundaries; however, a call like the
following creates an illegal memory access:

short a[51], b[50], c[50]; vecsum4(&a[1], b, c, 50);

On the ’C64x, nonaligned accesses to memory are allowed in C through the
_mem4 and _memd8 intrinsics.

Another consideration is that the loop must now run for an even number of it-
erations. You can ensure that this happens by padding the short arrays so that
the loop always operates on an even number of elements.
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If a vecsum( ) function is needed to handle short-aligned data and odd-num-
bered loop counters, then you must add code within the function to check for
these cases. Knowing what type of data is passed to a function can improve
performance considerably. It may be useful to write different functions that can
handle different types of data. If your short-data operations always operate on
even-numbered word-aligned arrays, then the performance of your applica-
tion can be improved. However, Example 3–11 provides a generic vecsum( )
function that handles all types of alignments and array sizes.

Example 3–11. Vector Sum With const Keywords, MUST_ITERATE pragma, and Word
Reads (Generic Version)

void vecsum5(short *sum, const short *in1, const short *in2, unsigned int N)
{
  int i;
 
     /* test to see if sum, in2, and in1 are aligned to a word boundary */
 
  if (((int)sum | (int)in2 | (int)in1) & 0x2)
  {
    #pragma MUST_ITERATE (20);
    for (i = 0; i < N; i++)
      sum[i] = in1[i] + in2[i];
  }
  else
  {
     const int *i_in1 = (const int *)in1;
     const int *i_in2 = (const int *)in2;
           int *i_sum = (int *)sum;
   
#pragma MUST_ITERATE (10); 
    for (i = 0; i < (N/2); i++)
      i_sum[i] = _add2(i_in1[i], i_in2[i]);
 
    if (N & 0x1) sum[i] = in1[i] + in2[i];
  }
}
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3.4.2.1 Using Word Access in Dot Product

Other intrinsics that are useful for reading short data as words are the multiply
intrinsics. Example 3–12 is a dot product example that reads word-aligned
short data and uses the _mpy( ) and _mpyh( ) intrinsics. The _mpyh( ) intrin-
sic uses the ’C6000 instruction MPYH, which multiplies the high 16 bits of two
registers, giving a 32-bit result.

This example also uses two sum variables (sum1 and sum2). Using only one
sum variable inhibits parallelism by creating a dependency between the write
from the first sum calculation and the read in the second sum calculation. With-
in a small loop body, avoid writing to the same variable, because it inhibits par-
allelism and creates dependencies.

Example 3–12. Dot Product Using Intrinsics

int dotprod(const short *a, const short *b, unsigned int N)
{
  int i, sum1 = 0, sum2 = 0;
 
  const int *i_a = (const int *)a;
  const int *i_b = (const int *)b;
 
  for (i = 0; i < (N >> 1); i++)
  {
    sum1 = sum1 + _mpy (i_a[i], i_b[i]);
    sum2 = sum2 + _mpyh(i_a[i], i_b[i]);
  }
 
  return sum1 + sum2;
}
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3.4.2.2 Using Word Access in FIR Filter

Example 3–13 shows an FIR filter that can be optimized with word reads of
short data and multiply intrinsics.

Example 3–13. FIR Filter—Original Form

void fir1(const short x[], const short h[], short y[], int n, int m, int s)
{
  int i, j;
  long y0;
  long round = 1L << (s – 1);
 
  for (j = 0; j < m; j++)
  {
    y0 = round;
 
    for (i = 0; i < n; i++)
      y0 += x[i + j] * h[i];
 
    y[j] = (int) (y0 >> s);
  }
}

Example 3–14 shows an optimized version of Example 3–13. The optimized
version passes an int array instead of casting the short arrays to int arrays and,
therefore, helps ensure that data passed to the function is word-aligned. As-
suming that a prototype is used, each invocation of the function ensures that
the input arrays are word-aligned by forcing you to insert a cast or by using int
arrays that contain short data.
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Example 3–14. FIR Filter— Optimized Form

void fir2(const int x[], const int h[], short y[], int n, int m, int s)
{
  int i, j;
  long y0, y1;
  long round = 1L << (s – 1);
 
  #pragma MUST_ITERATE (8);
 
  for (j = 0; j < (m >> 1); j++)
  {
    y0 = y1 = round;
 
    #pragma MUST_ITERATE (8);
    for (i = 0; i < (n >> 1); i++)
    {
      y0 += _mpy (x[i + j],   h[i]);
      y0 += _mpyh (x[i + j],   h[i]);
      y1 += _mpyhl(x[i + j],   h[i]);
      y1 += _mpylh(x[i + j + 1], h[i]);
    }
 
    *y++ = (int)(y0 >> s);
    *y++ = (int)(y1 >> s);
  }
}
 short x[SIZE_X], h[SIZE_H], y[SIZE_Y]; void main(){
     fir1((int *)x, (int *)h, y, n,m, s;
}
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3.4.2.3 Using Double Word Access for Word Data (’C64x and ’C67x Specific)

The ’C64x and ’C67x families have a load double word (LDDW) instruction,
which can read 64 bits of data into a register pair. Just like using word accesses
to read 2 short data items, double word accesses can be used to read 2 word
data items (or 4 short data items). When operating on a stream of float data,
you can use double accesses to read 2 float values at a time, and then use
intrinsics to operate on the data.

The basic float dot product is shown in Example 3–15. Since the float addition
(ADDSP) instruction takes 4 cycles to complete, the minimum kernel size for
this loop is 4 cycles. For this version of the loop, a result is completed every
4 cycles.

Example 3–15. Basic Float Dot Product

 float dotp1(const float a[], const float b[])
{
    int i;
    float sum = 0;
 
    for (i=0; i<512; i++)
        sum += a[i] * b[i];
 
    return sum;
}

In Example 3–16, the dot product example is rewritten to use double word
loads and intrinsics are used to extract the high and low 32-bit values con-
tained in the 64-bit double. The _hi() and _lo() instrinsics return integer values,
the _itof() intrinsic subverts the C typing system by interpreting an integer val-
ue as a float value. In this version of the loop, 2 float results are computed every
4 cycles. Recall that earlier it was said arrays are aligned on double word
boundaries by using either the DATA_ALIGN (for globally defined arrays) or
DATA_MEM_BANK (for locally defined arrays) pragmas.Example 3–16 and
Example 3–17 show these pragmas.
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Example 3–16. Float Dot Product Using Intrinsics

float dotp2(const double a[], const double b[])
{
    int i;
    float sum0 = 0;
    float sum1 = 0;
 
    for (i=0; i<512/2; i++)
    {
        sum0 += _itof(_hi(a[i]))   * _itof(_hi(b[i]));
        sum1 += _itof(_lo(a[i]))   * _itof(_lo(b[i]));
    }
 
    return sum0 + sum1;
}
#pragma DATA_ALIGN(a, 8);
#pragma DATA_ALIGN(b,8);
float ret_val, a[SIZE_A], b[SIZE_B];

void main()
{
     ret_val = dotp2((double *)a, (double *)b);
}

In Example 3–17, the dot product example is unrolled to maximize perfor-
mance. The preprocessor is used to define convenient macros FHI() and
FLO() for accessing the high and low 32-bit values in a double word. In this
version of the loop, 8 float values are computed every 4 cycles.
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Example 3–17. Float Dot Product With Peak Performance

#define FHI(a) _itof(_hi(a))
#define FLO(a) _itof(_lo(a))
 
float dotp3(const double a[], const double b[])
{
    int i;
    float sum0 = 0;
    float sum1 = 0;
    float sum2 = 0;
    float sum3 = 0;
    float sum4 = 0;
    float sum5 = 0;
    float sum6 = 0;
    float sum7 = 0;
    float sum8 = 0;
 
    for (i=0; i<512; i+=4)
    {
        sum0 += FHI(a[i])   * FHI(b[i]);
        sum1 += FLO(a[i])   * FLO(b[i]);
        sum2 += FHI(a[i+1]) * FHI(b[i+1]);
        sum3 += FLO(a[i+1]) * FLO(b[i+1]);
        sum4 += FHI(a[i+2]) * FHI(b[i+2]);
        sum5 += FLO(a[i+2]) * FLO(b[i+2]);
        sum6 += FHI(a[i+3]) * FHI(b[i+3]);
        sum7 += FLO(a[i+3]) * FLO(b[i+3]);
    }
 
    sum0 += sum1;
    sum2 += sum3;
    sum4 += sum5;
    sum6 += sum7;
    sum0 += sum2;
    sum4 += sum6;
 
    return sum0 + sum4;
}
void main()
{
/* Using 0 as the bank parameter for the DATA_MEM_BANK  */
/* pragma aligns variable to a double word boundary for */
/* the C62xx, C64xx, and C67xx. */
     #pragma DATA_MEM_BANK(a, 0);
     #pragma DATA_MEM_BANK (b, 0);
     float ret_val, a[SIZE_A], b[SIZE_B];
     ret_val = dotp3((double *)a, (double *)b);
}
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3.4.2.4 Using _nassert(), Word Accesses, and the MUST_ITERATE pragma

It is possible for the compiler to automatically perform SIMD optimizations for
some, but not all loops. By either using global arrays, or by using the _nassert()
intrinsic to provide alignment information about your pointers, the compiler can
transform your code to use word accesses and the ‘C6000 intrinsics.

Example 3–18 shows how the compiler can automatically do this optimization.

Example 3–18. Using the Compiler to Generate a Dot Product With Word Accesses

int dotprod1(const short *a, const short *b, unsigned int N)
{
    int i, sum = 0;
    /* a and b are aligned to a word boundary */
    _nassert(((int)(a) & 0x3) == 0);
    _nassert(((int)(b) & 0x3) == 0);
    #pragma MUST_ITERATE (40, 40);
    for (i = 0; i < N; i++)
    sum += a[i] * b[i];
    return sum;
}

Compile Example 3–18 with the following options: –o -k. Open up the assem-
bly file and look at the loop kernel. The results are the exact same as those
produced by Example 3–12. The first 2 _nassert() intrinsics in Example 3–18
tell the compiler that the arrays pointed to by a and b are aligned to a word
boundary, so it is safe for the compiler to use a LDW instruction to load two
short values. The compiler generates the _mpy() and _mpyh() intrinsics inter-
nally as well as the two sums that were used in Example 3–12 (shown again
below).

int dotprod(const short *a, const short *b,
                                unsigned int N)

{

int i, sum1 = 0, sum2 = 0;

const int *i_a = (const int *)a;

const int *i_b = (const int *)b;

for (i = 0; i < (N >> 1); i++) {

sum1 = sum1 + _mpy (i_a[i], i_b[i]);

sum2 = sum2 + _mpyh (i_a[i], i_b[i]);

}

return sum1 + sum2;

}
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You need some way to convey to the compiler that this loop will also execute
an even number of times. The MUST_ITERATE pragma conveys loop count
information to the compiler. For example, #pragma MUST_ITERATE (40, 40),
tells the compiler the loop immediately following this pragma will execute a
minimum of 40 times (the first argument), and a maximum of 40 times (the sec-
ond argument). An optional third argument tells the compiler what the trip
count is a multiple of. See the TMS320C6000 C/C++ Compiler User’s Guide
for more information about the MUST_ITERATE pragma.

Example 3–19 and Example 3–20 show how to use the _nassert() intrinsic
and MUST_ITERATE pragma to get word accesses on the vector sum and the
FIR filter.

Example 3–19. Using the _nassert() Intrinsic to Generate Word Accesses for Vector Sum

void vecsum(short *sum, const short *in1,
const short *in2, unsigned int N)

{
int i;
_nassert(((int)sum & 0x3) == 0);
_nassert(((int)in1 & 0x3) == 0);
_nassert(((int)in2 & 0x3) == 0);
#pragma MUST_ITERATE (40, 40);
for (i = 0; i < N; i++)

sum[i] = in1[i] + in2[i];
}
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Example 3–20. Using _nassert() Intrinsic to Generate Word Accesses for FIR Filter

void fir (const short x[], const short h[], short y[]
    int n, int m, int s)

{ int i, j;
long y0;
long round = 1L << (s - 1);
_nassert(((int)x & 0x3) == 0);
_nassert(((int)h & 0x3) == 0);
_nassert(((int)y & 0x3) == 0);
for (j = 0; j < m; j++)
{

y0 = round;
#pragma MUST_ITERATE (40, 40);
for (i = 0; i < n; i++)

y0 += x[i + j] * h[i];
y[j] = (int)(y0 >> s);

}
}

As you can see from Example 3–20, the optimization done by the compiler is
not as optimal as the code produced in Example 3–14, but it is more optimal
than the code in Example 3–13.

Example 3–21. Compiler Output From Example 3–20

L3:    ; PIPED LOOP KERNEL

   [!B0]   ADD     .L1     A9,A7:A6,A7:A6    ; |21|
||         MPY     .M2X    A3,B3,B2          ; |21|
||         MPYHL   .M1X    B3,A0,A0          ; |21|
|| [ A1]   B       .S2     L3                ; @|21|
||         LDH     .D2T2   *++B9(8),B3       ; @@|21|
||         LDH     .D1T1   *+A8(4),A3        ; @@|21|

   [!B0]   ADD     .L2     B3,B5:B4,B5:B4    ; |21|
||         MPY     .M1X    A0,B1,A9          ; @|21|
||         LDW     .D2T2   *+B8(4),B3        ; @@|21|
||         LDH     .D1T1   *+A8(6),A0        ; @@|21|

   [ B0]   SUB     .S2     B0,1,B0           ;
|| [!B0]   ADD     .L2     B2,B7:B6,B7:B6    ; |21|
|| [!B0]   ADD     .L1     A0,A5:A4,A5:A4    ; |21|
||         MPYHL   .M2     B1,B3,B3          ; @|21|
|| [ A1]   SUB     .S1     A1,1,A1           ; @@|21|
||         LDW     .D2T2   *++B8(8),B1       ; @@@|21|
||         LDH     .D1T1   *++A8(8),A0       ; @@@|21|
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Example 3–22. Compiler Output From Example 3–14

L3:    ; PIPED LOOP KERNEL
           ADD     .L2     B3,B5:B4,B5:B4
||         ADD     .L1     A3,A5:A4,A5:A4
||         MV      .S2     B1,B2
||         MPY     .M2X    B1,A8,B3
||         MPYHL   .M1X    B1,A8,A3
|| [ A1]   B       .S1     L3
|| [ B0]   LDW     .D2T2   *B8,B1
   [ B0]   SUB     .S2     B0,1,B0
||         ADD     .L1     A3,A7:A6,A7:A6
||         ADD     .L2     B3,B7:B6,B7:B6
||         MPYH    .M1X    B2,A8,A3
||         MPYHL   .M2X    A8,B9,B3
|| [ A1]   SUB     .S1     A1,1,A1
|| [ B0]   LDW     .D1T1   *A0++,A8
|| [ B0]   LDW     .D2T2   *++B8,B9

Example 3–23. Compiler Output From Example 3–13

L4:    ; PIPED LOOP KERNEL
   [ A2]   SUB     .S1     A2,1,A2
||         ADD     .L1     A5,A1:A0,A1:A0
||         MPY     .M1X    B5,A4,A5
|| [ B0]   B       .S2     L4
|| [ B0]   SUB     .L2     B0,1,B0
|| [ A2]   LDH     .D1T1   *A3++,A4
|| [ A2]   LDH     .D2T2   *B4++,B5

Note:
The _nassert() intrinsic may not solve all of your short to int or float-to-double
accesses, but it can be a useful tool in achieving better performance without
rewriting the C code.
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If your code operates on global arrays as in Example 3–24, and you build your
application with the -pm and -o3 options, the compiler will have enough infor-
mation (trip counts and alignments of variables) to determine whether or not
SIMD optimization is feasible.

Example 3–24. Automatic Use of Word Accesses Without the _nassert Intrinsic

<file1.c>
int dotp (short *a, short *b, int c)
{

int sum = 0, i;
for (i = 0; i < c; i++) sum += a[i] * b[i];
return sum;

}
<file2.c>
#include <stdio.h>
short x[40] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40 };

short y[40] = { 40, 39, 38, 37, 36, 35, 34, 33, 32, 31,
30, 29, 28, 27, 26, 25, 24, 23, 22, 21,
20, 19, 18, 17, 16, 15, 14, 13, 12, 11,
10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };

void main()
{

int z;
z = dotp(x, y, 40);
printf(“z = %d\n”, z);

}

Compile file1.c and file2.c with:
cl6x -pm -o3 -k file1.c file2.c
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Below is the resulting assembly file (file1.asm). Notice that the dot product loop
uses word accesses and the ‘C6000 intrinsics.

L2:    ; PIPED LOOP KERNEL

   [!A1]   ADD     .L2     B6,B7,B7

|| [!A1]   ADD     .L1     A6,A0,A0

||         MPY     .M2X    B5,A4,B6

||         MPYH    .M1X    B5,A4,A6

|| [ B0]   B       .S1     L2

||         LDW     .D1T1   *+A5(4),A4

||         LDW     .D2T2   *+B4(4),B6

   [ A1]   SUB     .S1     A1,1,A1

|| [!A1]   ADD     .S2     B5,B8,B8

|| [!A1]   ADD     .L1     A6,A3,A3

||         MPY     .M2X    B6,A4,B5

||         MPYH    .M1X    B6,A4,A6

|| [ B0]   SUB     .L2     B0,1,B0

||         LDW     .D1T1   *++A5(8),A4

||         LDW     .D2T2   *++B4(8),B5
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3.4.3 Software Pipelining

Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations of the loop execute in parallel. When you use the –o2
and –o3 compiler options, the compiler attempts to software pipeline your
code with information that it gathers from your program.

Figure 3–3 illustrates a software-pipelined loop. The stages of the loop are
represented by A, B, C, D, and E. In this figure, a maximum of five iterations
of the loop can execute at one time. The shaded area represents the loop ker-
nel. In the loop kernel, all five stages execute in parallel. The area immediately
before the kernel is known as the pipelined-loop prolog, and the area immedi-
ately following the kernel is known as the pipelined-loop epilog.

Figure 3–3. Software-Pipelined Loop

A1

B1 A2

C1 B2 A3 Pipelined-loop prolog

D1 C2 B3 A4

E1 D2 C3 B4 A5 Kernel

E2 D3 C4 B5

E3 D4 C5 Pipelined-loop epilog

E4 D5

E5

Because loops present critical performance areas in your code, consider the
following areas to improve the performance of your C code:

� Trip count
� Redundant loops
� Loop unrolling
� Speculative execution
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3.4.3.1 Trip Count Issues

A trip count is the number of loop iterations executed. The trip counter is the
variable used to count each iteration. When the trip count reaches a limit equal
to the trip count, the loop terminates.

If the compiler can guarantee that at least n loop iterations will be executed,
then n is the known minimum trip count. Sometimes the compiler can deter-
mine this information automatically. Alternatively, the user can provide this in-
formation using the MUST_ITERATE and PROB_ITERATE pragma. For more
information about pragmas, see the TMS320C6000 Optimizing C/C++ Com-
piler User’s Guide (SPRU187).

The minimum safe trip count is the number of iterations of the loop that are nec-
essary to safely execute the software pipelined version of the loop.

All software pipelined loops have a minimum safe trip count requirement. If the
known minimum trip count is not above the minimum safe trip count, redundant
loops will be generated.

The known minimum trip count and the minimum safe trip count for a given
software pipelined loop can be found in the compiler-generated comment
block for that loop.

In general, loops that can be most efficiently software pipelined have loop trip
counters that count down. In most cases, the compiler can transform the loop
to use a trip counter that counts down even if the original code was not written
that way.

For example, the optimizer at levels –o2 and –o3 transforms the loop in
Example 3–25(a) to something like the code in Example 3–25(b).

Example 3–25. Trip Counters

(a) Original code

for (i = 0; i < N; i++) / * i = trip counter , N = trip count */

(b) Optimized code

for (i = N; i != 0; i––) /* Downcounting trip counter */
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3.4.3.2 Eliminating Redundant Loops

Sometimes the compiler cannot determine if the loop always executes more
than the minimum safe trip count. Therefore, the compiler will generate two
versions of the loop:

� An unpipelined version that executes if the trip count is less than the mini-
mum safe trip count.

� A software-pipelined version that executes if the trip count is equal to or
greater than the minimum safe trip count.

Obviously, the need for redundant loops will hurt both codesize and to a lesser
extent, performance.

You can use the -mh option, when safe, to reduce the need for a redundant
loop.

To indicate to the compiler that you do not want two versions of the loop, you
can use the -ms0 or -ms1 option. The compiler will generate the software pipe-
lined version of the loop only if it can prove the minumum trip count will always
be equal or greater than the effective minimum trip count of the software pipe-
lined version of the loop. Otherwise, the non pipelined version will be gener-
ated. In order to help the compiler generate only the software pipelined version
of the loop, use the MUST_ITERATE pragma and/or the -pm option to help the
compiler determine the known minimum trip count.

Note: Use of -ms0 or -ms1 may result in a performance degredation

Using -ms0 or -ms1 may cause the compiler not to software pipeline a loop.
This can cause the performance of the loop to suffer.

The compiler performs an optimization called prolog/epilog collapsing to re-
duce code size of pipelined loops. In particular, this optimization involves roll-
ing the prolog and/or epilog (or parts thereof) back into the kernel. This can
result in a major code size reduction. This optimization can also reduce the
minimum trip count needed to safely execute the software-pipelined loop,
thereby eliminating the need for redundant loops in many cases.

The user can increase the compiler’s ability to perform this optimization by us-
ing the -mh, or -mhn option whenever possible. See the TMS320C6000 Opti-
mizing C/C++ Compiler User’s Guide for more information about options.
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3.4.3.3 Communicating Trip-Count Information to the Compiler

When invoking the compiler, use the following options to communicate trip-
count information to the compiler:

� Use the –o3 and –pm compiler options to allow the optimizer to access the
whole program or large parts of it and to characterize the behavior of loop
trip counts.

� Use the MUST_ITERATE pragma to help reduce code size by preventing
the generation of a redundant loop or by allowing the compiler (with or
without the –ms option) to software pipeline innermost loops.

You can use the MUST_ITERATE and PROB_ITERATE pragma to convey
many different types of information about the trip count to the compiler.

� The MUST_ITERATE pragma can convey that the trip count will always
equal some value.

/* This loop will always execute exactly 30 times */

#pragma MUST_ITERATE (30, 30);

for (j = 0; j < x; j++)

� The MUST_ITERATE pragma can convey that the trip count will be great-
er than some minimum value or smaller than some maximum value. The
latter is useful when interrupts need to occur inside of loops and you are
using the -mi<n> option. Refer to section 7.4, Interruptible Loops.

/* This loop will always execute at least 30 times */

#pragma MUST_ITERATE (30);

for (j = 0; j < x; j++)

� The MUST_ITERATE pragma can convey that the trip count is always di-
visible by a value.

/* The trip count will execute some multiple of 4 times */

#pragma MUST_ITERATE (,, 4);

for (j = 0; j < x; j++)

This information call all be combined as well into a single C statement:

#pragma MUST_ITERATE (8, 48, 8);

for (j = 0; j < x; j++)

The compiler knows that this loop will execute some multiple of 8 (between 8
and 48) times. This information is useful in providing more information about
unrolling a loop or the ability to perform word accesses on a loop.
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Several examples in this chapter and in section 7.4.4 show all of the different
ways that the MUST_ITERATE pragma and _nassert intrinsic can be used.

The _nassert intrinsic can convey information about the alignment of pointers
and arrays.

void vecsum(short *a, const short *b, const short *c)
{

_nassert(((int) a & 0x3) == 0);
_nassert(((int) b & 0x3) == 0);
_nassert(((int) c & 0x3) == 0);
. . .

}

See the TMS320C6000 Optimizing C/C++ Compiler User’s Guide for a com-
plete discussion of the –ms, –o3, and –pm options, the _nassert intrinsic, and
the MUST_ITERATE and PROB_ITERATE pragmas.

3.4.3.4 Loop Unrolling

Another technique that improves performance is unrolling the loop; that is, ex-
panding small loops so that each iteration of the loop appears in your code.
This optimization increases the number of instructions available to execute in
parallel. You can use loop unrolling when the operations in a single iteration
do not use all of the resources of the ’C6000 architecture.

There are three ways loop unrolling can be performed:

1) The compiler may automatically unroll the loop.

2) You can suggest that the compiler unroll the loop using the UNROLL pragma.

3) You can Unroll the C/C++ code yourself

In Example 3–26, the loop produces a new sum[i] every two cycles. Three
memory operations are performed: a load for both in1[i] and in2[i] and a store
for sum[i]. Because only two memory operations can execute per cycle, two
cycles are necessary to perform three memory operations.

Example 3–26. Vector Sum With Three Memory Operations

void vecsum2(short *sum, const short *in1, const short *in2, unsigned int N)

{
  int i;
 
  for (i = 0; i < N; i++)
    sum[i] = in1[i] + in2[i];
}
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The performance of a software pipeline is limited by the number of resources
that can execute in parallel. In its word-aligned form (Example 3–27), the vec-
tor sum loop delivers two results every two cycles because the two loads and
the store are all operating on two 16-bit values at a time.

Example 3–27. Word-Aligned Vector Sum

void vecsum4(short *sum, const short *in1, const short *in2, unsigned int N)
{
  int i;
 
   const int *i_in1 = (const int *)in1;
   const int *i_in2 = (const int *)in2;
         int *i_sum = (int *)sum;
 
  #pragma MUST_ITERATE (10);
 
  for (i = 0; i < (N/2); i++)
    i_sum[i] = _add2(i_in1[i], i_in2[i]);
}

If you unroll the loop once, the loop then performs six memory operations per
iteration, which means the unrolled vector sum loop can deliver four results ev-
ery three cycles (that is, 1.33 results per cycle). Example 3–28 shows four re-
sults for each iteration of the loop: sum[i] and sum[i+sz] each store an int value
that represents two 16-bit values.

Example 3–28 is not simple loop unrolling where the loop body is simply repli-
cated. The additional instructions use memory pointers that are offset to point
midway into the input arrays and the assumptions that the additional arrays are
a multiple of four shorts in size.

Example 3–28. Vector Sum Using const Keywords, MUST_ITERATE pragma, Word
 Reads, and Loop Unrolling

void vecsum6(int *sum, const int *in1, const int *in2, unsigned int N)
{
  int i;
  int sz = N >> 2;
 
  #pragma MUST_ITERATE (10);
 
  for (i = 0; i < sz; i++)
  {
     sum[i]  = _add2(in1[i],  in2[i]);
     sum[i+sz] = _add2(in1[i+sz], in2[i+sz]);
  }
}
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Software pipelining is performed by the compiler only on inner loops; there-
fore, you can increase performance by creating larger inner loops. One meth-
od for creating large inner loops is to completely unroll inner loops that execute
for a small number of cycles.

In Example 3–29, the compiler pipelines the inner loop with a kernel size of one
cycle; therefore, the inner loop completes a result every cycle. However, the
overhead of filling and draining the software pipeline can be significant, and
other outer-loop code is not software pipelined.

Example 3–29. FIR_Type2—Original Form

void fir2(const short input[], const short coefs[], short out[])
{
  int i, j;
  int sum = 0;
 
  for (i = 0; i < 40; i++)
  {
    for (j = 0; j < 16; j++)
      sum += coefs[j] * input[i + 15 – j];
 
    out[i] = (sum >> 15);
  }
}

For loops with a simple loop structure, the compiler uses a heuristic to deter-
mine if it should unroll the loop. Because unrolling can increase code size, in
some cases the compiler does not unroll the loop. If you have identified this
loop as being critical to your application, then unroll the inner loop in C code,
as in Example 3–30.

In general unrolling may be a good idea if you have an uneven partition or if
your loop carried dependency bound is greater than the partition bound. (Refer
to section 6.7, Loop Carry Paths and section 3.2 in the TMS320C6000 Opti-
mizing C/C++ Compiler User’s Guide. This information can be obtained by us-
ing the option and looking at the comment block before the loop.
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Example 3–30. FIR_Type2—Inner Loop Completely Unrolled

void fir2_u(const short input[], const short coefs[], short out[])
{
  int i, j;
  int sum;
 
  for (i = 0; i < 40; i++)
  {
    sum = coefs[0] * input[i + 15];
    sum += coefs[1] * input[i + 14];
    sum += coefs[2] * input[i + 13];
    sum += coefs[3] * input[i + 12];
    sum += coefs[4] * input[i + 11];
    sum += coefs[5] * input[i + 10];
    sum += coefs[6] * input[i + 9];
    sum += coefs[7] * input[i + 8];
    sum += coefs[8] * input[i + 7];
    sum += coefs[9] * input[i + 6];
    sum += coefs[10] * input[i + 5];
    sum += coefs[11] * input[i + 4];
    sum += coefs[12] * input[i + 3];
    sum += coefs[13] * input[i + 2];
    sum += coefs[14] * input[i + 1];
    sum += coefs[15] * input[i + 0];
 
    out[i] = (sum >> 15);
  }
}

Now the outer loop is software-pipelined, and the overhead of draining and fill-
ing the software pipeline occurs only once per invocation of the function rather
than for each iteration of the outer loop.

The heuristic the compiler uses to determine if it should unroll the loops needs
to know either of the following pieces of information. Without knowing either
of these the compiler will never unroll a loop.

� The exact trip count of the loop
� Or that the trip count of the loop is some multiple of two

The first requirement can be communicated using the MUST_ITERATE prag-
ma. The second requirement can also be passed to the compiler through the
MUST_ITERATE pragma. In section 3.4.3.3, Communicating Trip-Count In-
formation to the Compiler, it is explained that the MUST_ITERATE pragma can
be used to provide information about loop unrolling. By using the third argu-
ment, you can specify that the trip count is a multiple or power of two.

#pragma MUST_ITERATE ( n, n, 2);
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Example 3–31 shows how the compiler can perform simple loop unrolling of
replicating the loop body. The MUST_ITERATE pragma tells the compiler that
the loop will execute an even number of 20 or more times. This compiler will
unroll the loop once to take advantage of the performance gain that results
from the unrolling.

Example 3–31. Vector Sum

void func(short *a, const short *b, const short *c, int n)
{

int i;
#pragma MUST_ITERATE (20, , 2);
for (i = 0; i < n; i++) a[i] = b[i] + c[i];

}
<compiler output for above code>

L2:    ; PIPED LOOP KERNEL

           ADD     .L1X    B7,A3,A3          ; |5| 
|| [ B0]   B       .S1     L2                ; @|5| 
||         LDH     .D1T1   *++A4(4),A3       ; @@|5| 
||         LDH     .D2T2   *++B4(4),B7       ; @@|5| 

   [!A1]   STH     .D1T1   A3,*++A0(4)       ; |5| 
||         ADD     .L2X    B6,A5,B6          ; |5| 
||         LDH     .D2T2   *+B4(2),B6        ; @@|5| 

   [ A1]   SUB     .L1     A1,1,A1           ; 
|| [!A1]   STH     .D2T2   B6,*++B5(4)       ; |5| 
|| [ B0]   SUB     .L2     B0,1,B0           ; @@|5| 
||         LDH     .D1T1   *+A4(2),A5        ; @@|5|

Note:

When the interrupt threshold option is used, unrolling can be used to regain
lost performance. Refer to section 7.4.4 Getting the Most Performance Out
of Interruptible Code.

If the compiler does not automatically unroll the loop, you can suggest that the
compiler unroll the loop by using the UNROLL pragma. See the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-
tion.
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3.4.3.5 Speculative Execution (–mh option)

The –mh option facilitates the compiler’s ability to remove prologs and epilogs.
Indirectly, it can reduce register pressure. Use of this option can lead to better
code size and better performance. This option may cause a loop to read past
the end of an array. Thus, the user assumes responsibility for safety. For a
complete discussion of the -mh option, including how to use it safely, see the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

3.4.3.6 What Disqualifies a Loop from Being Software-Pipelined

In a sequence of nested loops, the innermost loop is the only one that can be
software-pipelined. The following restrictions apply to the software pipelining
of loops:

� If a register value is live too long, the code is not software-pipelined. See
section 6.6.6.2, Live Too Long, on page 6-67 and section 6.10, Live-Too-
Long Issues, on page 6-101 for examples of code that is live too long.

� If the loop has complex condition code within the body that requires more
than the five ’C6000 condition registers on the ’C62x and ’C67x, or six con-
dition registers for the ’C64x, the loop is not software pipelined. Try to elim-
inate or combine these conditions.

� Although a software pipelined loop can contain intrinsics, it cannot contain
function calls, including code that will call the run-time support routines.
The exception is function calls that will be inlined.

for (i = 0; i < 100; i++)

x[i] = x[i] % 5;

This will call the run-time support _remi routine.

� In general, you should not have a conditional break (early exit) in the loop.
You may need to rewrite your code to use if statements instead. In some,
but not all cases, the compiler can do this automatically. Use the if state-
ments only around code that updates memory (stores to pointers and ar-
rays) and around variables whose values calculated inside the loop and
are used outside the loop.
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� In the loop in Example 3–32, there is an early exit. If dist0 or dist1 is less
than distance, then execution breaks out of the loop early. If the compiler
could not perform transformations to the loop to software pipeline the loop,
you would have to modify the code. Example 3–33 shows how the code
would be modified so the compiler could software pipeline this loop. In this
case however, the compiler can actually perform some transformations
and software pipeline this loop better than it can the modified code in
Example 3–33.

Example 3–32. Use of If Statements in Float Collision Detection (Original Code)

int colldet(const float *x, const float *p, float point,
float distance)

{
int I, retval = 0;
float sum0, sum1, dist0, dist1;
for (I = 0; I < (28 * 3); I += 6)

{
sum0 = x[I+0]*p[0] + x[I+1]*p[1] + x[I+2]*p[2];
sum1 = x[I+3]*p[0] + x[I+4]*p[1] + x[I+5]*p[2];
dist0 = sum0 - point;
dist1 = sum1 - point;
dist0 = fabs(dist0);
dist1 = fabs(dist1);
if (dist0 < distance)
{

retval = (int)&x[I + 0];
break;

}
if (dist1 < distance)

{
retval = (int)&x[I + 3];
break;

}
}
return retval;

}
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Example 3–33. Use of If Statements in Float Collision Detection (Modified Code)

int colldet_new(const float *x, const float *p, float point, 
float distance)

{

int I, retval = 0;
float sum0, sum1, dist0, dist1;
for (I = 0; I < (28 * 3); I += 6)
{

sum0 = x[I+0]*p[0] + x[I+1]*p[1] + x[I+2]*p[2];
sum1 = x[I+3]*p[0] + x[I+4]*p[1] + x[I+5]*p[2];
dist0 = sum0 - point;
dist1 = sum1 - point;
dist0 = fabs(dist0);
dist1 = fabs(dist1);
if ((dist0<distance)&&!retval) retval = (int)&x[I+0];
if ((dist1<distance)&&!retval) retval = (int)&x[I+3];

}
return retval;

}

� The loop cannot have an incrementing loop counter. Run the optimizer
with the –o2 or –o3 option to convert as many loops as possible into down-
counting loops.

� If the trip counter is modified within the body of the loop, it typically cannot
be converted into a downcounting loop. If possible, rewrite the loop to not
modify the trip counter. For example, the following code will not software
pipeline:

for (i = 0; i < n; i++)
{

. . .
i += x;

}

� A conditionally incremented loop control variable is not software pipelined.
Again, if possible, rewrite the loop to not conditionally modify the trip count-
er. For example the following code will not software pipeline:

for (i = 0; i < x; i++)
{

. . .
if (b > a)

i += 2
}

� If the code size is too large and requires more than the 32 registers in the
‘C62x and ’C67x, or 64 registers on the ’C64x, it is not software pipelined.
Either try to simplify the loop or break the loop up into multiple smaller
loops.
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Linking Issues

This chapter contains useful information about other problems and questions
that might arise while building your projects, including:

� What to do with the relocation value truncated linker and assembler mes-
sages

� How to save on-chip memory by moving the RTS off-chip

� How to build your application with RTS calls either near or far

� How to change the default RTS data from far to near

Topic Page

4.1 How to Use Linker Error Messages 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 How to Save On-Chip Memory by Placing RTS Off-Chip 4-5. . . . . . . . . . 
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4.1 How to Use Linker Error Messages

When you try to call a function which, due to how you linked your application,
is too far away from a call site to be reached with the normal PC-relative branch
instruction, you will see the following linker error message:

>> PC-relative displacement overflow. Located in file.obj,

section .text, SPC offset 000000bc

This message means that in the named object file in that particular section, is
a PC-relative branch instruction trying to reach a call destination that is too far
away. The SPC offset is the section program counter (SPC) offset within that
section where the branch occurs. For C code, the section name will be .text
(unless a CODE_SECTION pragma is in effect).

You might also see this message in connection with an MVK instruction:

>> relocation value truncated at 0xa4 in section .text,
file file.obj

Or, an MVK can be the source of this message:

>> Signed 16-bit relocation out of range, value truncated.
Located in file.obj, section .text, SPC offset 000000a4

These messages are similar. The file is file.obj, the section is .text, and the
SPC offset is 0xa4. If this happens to you when you are linking C code, here
is what you do to find the problem:

� Recompile the C source file as you did before but include –s –al in the op-
tions list

cl6x <other options> –s –al file.c

This will give you C interlisted in the assembly output and create an assembler
listing file with the extension .lst.

� Edit the resulting .lst file, in this case file.lst.

� Each line in the assembly listing has several fields. For a full description
of those fields see section 3.10 of the TMS320C6000 Assembly Language
Tools User’s Guide. The field you are interested in here is the second one,
the section program counter (SPC) field. Find the line with the same SPC
field as the SPC offset given in the linker error message. It will look like:

245 000000bc 0FFFEC10!     B   .S1  _atoi      ; |56|

In this case, the call to the function atoi is too far away from the location where
this code is linked.

It is possible that use of –s will cause instructions to move around some and
thus the instruction at the given SPC offset is not what you expect. The branch
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or MVK nearest to that instruction is the most likely cause. Or, you can rebuild
the whole application with –s –al and relink to see the new SPC offset of the
error.

If you are tracing a problem in a hand-coded assembly file, the process is simi-
lar, but you merely re-assemble with the –l option instead of recompiling.

To fix a branch problem, your choices are:

� Use the –mr1 option to force the call to atoi, and all other RTS functions,
to be far.

� Compile with –ml1 or higher to force all calls to be far.

� Rewrite your linker command file (looking at a map file usually helps) so
that all the calls to atoi are close (within 0x100000 words) to where atoi is
linked.

If the problem instruction is an MVK, then you need to understand why the
constant expression does not fit.

For C code, you might find the instruction looks like:

50 000000a4 0200002A%    MVK  (_ary–$bss),B4   ; |5|

In this case, the address of the C object ary is being computed as if ary is de-
clared near (the default), but because it falls outside of the 15-bit address
range the compiler presumes for near objects, you get the warning. To fix this
problem, you can declare ary to be far, or you can use the correct cl6x –ml<n>
memory model option to automatically declare ary and other such data objects
to be far. See chapter 2 of the TMS320C6000 Optimizing C/C++ Compiler
User’s Guide for more information on –ml<n>.

It is also possible that ary is defined as far in one file and declared as near in
this file. In that case, insure ary is defined and declared consistently to all files
in the project.

If the MVK instruction is just a simple load of an address:

123 000000a4 0200002A!         MVK     sym,B4

Then the linker warning message is telling you that sym is greater than 32767,
and you will end up with something other than the value of sym in B4. In most
cases, this instruction is accompanied by:

124 000000a8 0200006A!         MVKH    sym,B4

When this is the case, the solution is to change the MVK to MVKL.

On any other MVK problem, it usually helps to look up the value of the sym-
bol(s) involved in the linker map file.
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4.1.1 Executable Flag

You may also see the linker message:

>> warning: output file file.out not executable

If this is due solely to MVK instructions, paired with MVKH, which have yet to
be changed to MVKL, then this warning may safely be ignored. The loaders
supplied by TI will still load and execute this .out file.

If you implement your own loader, please be aware this warning message
means the F_EXEC flag in the file header is not set. If your loader depends on
this flag, then you will have to fix your MVK instructions, or use the switches
described above to turn off these warnings.
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4.2 How to Save On-Chip Memory by Placing RTS Off-Chip

One of many techniques you might use to save valuable on-chip space is to
place the code and data needed by the runtime-support (RTS) functions in off-
chip memory.

Placing the RTS in off-chip memory has the advantage of saving valuable on-
chip space. However, it comes at a cost. The RTS functions will run much slow-
er. Depending on your application, this may or may not be acceptable. It is also
possible your application doesn’t use the RTS library much, and placing the
RTS off-chip saves very little on-chip memory.

Table 4–1. Definitions

Term Means

Normal RTS
functions

Ordinary RTS functions. Example: strcpy

Internal RTS
functions

Functions which implement atomic C operations such as divide or floating point math on the
C62x and C64x. Example: _divu performs 32-bit unsigned divide.

near calls Function calls performed with a ordinary PC-relative branch instruction. The destination of
such branches must be within 1 048 576 (0x100000) words of the branch. Such calls use 1
instruction word and 1 cycle.

far calls Function calls performed by loading the address of the function into a register and then
branching to the address in the register. There is no limit on the range of the call. Such calls
use 3 instruction words and 3 cycles.

 

4.2.1 How to Compile

Make use of shell (cl6x) options for controlling how RTS functions are called:

Table 4–2. Command Line Options for RTS Calls

Option Internal RTS calls Normal RTS calls

Default Same as user Same as user

–mr0 Near Near

–mr1 Far Far

By default, RTS functions are called with the same convention as ordinary
user-coded functions. If you do not use a –ml<n> option to enable one of large-
memory models, then these calls will be near. The option –mr0 causes calls
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to RTS functions to be near, regardless of the setting of the –ml<n> switch.
This option is for special situations, and typically isn’t needed. The option –mr1
will cause calls to RTS functions to be far, regardless of the setting of the –
ml<n> switch.

Note these options only address how RTS functions are called. Calling func-
tions with the far method does not mean those functions must be in off-chip
memory. It simply means those functions can be placed at any distance from
where they are called.

4.2.2 Must #include Header Files

When you call a RTS function, you must include the header file which corre-
sponds to that function. For instance, when you call memcmp, you must #in-
clude <string.h>. If you do not include the header, the memcmp call looks like
a normal user call to the compiler, and the effect of using –mr1 does not occur.

4.2.3 RTS Data

Most RTS functions do not have any data of their own. Data is typically passed
as arguments or through pointers. However, a few functions do have their own
data. All of the ”is<xxx>” character recognition functions defined in ctype.h re-
fer to a global table. Also, many of the floating point math functions have their
own constant look-up tables.  All RTS data is defined to be far data, for exam-
ple, accessed without regard to where it is in memory. Again, this does not nec-
essarily mean this data is in off-chip memory.

Details on how to change access of RTS data are given in section 4.2.7
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4.2.4 How to Link

You place the RTS code and data in off-chip memory through the linking pro-
cess. Here is an example linker command file you could use instead of the
lnk.cmd file provided in the \lib directory.

/*********************************************************************/
/* farlnk.cmd – Link command file which puts RTS off-chip            */
/*********************************************************************/
–c
–heap  0x2000
–stack 0x4000
 
/* Memory Map 1 – the default */
MEMORY
{
        PMEM:   o = 00000000h   l = 00010000h
        EXT0:   o = 00400000h   l = 01000000h
        EXT1:   o = 01400000h   l = 00400000h
        EXT2:   o = 02000000h   l = 01000000h
        EXT3:   o = 03000000h   l = 01000000h
        BMEM:   o = 80000000h   l = 00010000h
}
 
SECTIONS
{
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* Sections defined only in RTS.                                 */
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .stack      >       BMEM
    .sysmem     >       BMEM
    .cio        >       EXT0
 
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* Sections of user code and data                                */
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .text       >       PMEM
    .bss        >       BMEM
    .const      >       BMEM
    .data       >       BMEM
    .switch     >       BMEM
    .far        >       EXT2
 
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* All of .cinit, including from RTS, must be collected together */
    /* in one step.                                                  */
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .cinit      >       BMEM
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    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* RTS code – placed off chip                                    */
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .rtstext   { –lrts6200.lib(.text)   } > EXT0
 
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* RTS data – undefined sections – placed off chip               */
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .rtsbss    { –lrts6200.lib(.bss)
                 –lrts6200.lib(.far)    } > EXT0
 
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    /* RTS data – defined sections – placed off chip                 */
    /*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
    .rtsdata   { –lrts6200.lib(.const)
                 –lrts6200.lib(.switch) } > EXT0
}

User sections (.text, .bss, .const, .data, .switch, .far) are built and allocated
normally.

The .cinit section is built normally as well. It is important to not allocate the RTS
.cinit sections separately as is done with the other RTS sections. All of the .cinit
sections must be combined together into one section for auto-initialization of
global variables to work properly.

The .stack, .sysmem, and .cio sections are entirely created from within the
RTS. So, you don’t need any special syntax to build and allocate these sec-
tions separately from user sections. Typically, you place the .stack (system
stack) and .sysmem (heap of memory used by malloc, etc.) sections in on-chip
memory for performance reasons. The .cio section is a buffer used by printf
and related functions. You can typically afford slower performance of such I/O
functions, so it is placed in off-chip memory.

The .rtstext section collects all the .text, or code, sections from RTS and allo-
cates them to external memory name EXT0. If needed, replace the library
name rts6200.lib with the library you normally use, perhaps rts6700.lib. The
–l is required, and no space is allowed between the –l and the name of the libra-
ry. The choice of EXT0 is arbitrary. Use the memory range which makes the
most sense in your application.

The .rtsbss section combines all of the undefined data sections together. Un-
defined sections reserve memory without any initialization of the contents of
that memory. You use .bss and .usect assembler directives to create unde-
fined data sections.
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The .rtsdata section combines all of the defined data sections together. De-
fined data sections both reserve and initialize the contents of a section. You
use the .sect assembler directive to create defined sections.

It is necessary to build and allocate the undefined data sections separately
from the defined data sections. When a defined data section is combined to-
gether with an undefined data section, the resulting output section is a defined
data section, and the linker must fill the range of memory corresponding to the
undefined section with a value, typically the default value of 0. This has the un-
desirable effect of making your resulting .out file much larger.

You may get a linker warning like:

>> farlnk.cmd, line 65: warning: rts6200.lib(.switch) not
found

That means none of the RTS functions needed by your application define a
.switch section. Simply delete the corresponding –l entry in the linker com-
mand file to avoid the message. If your application changes such that you later
do include an RTS function with a .switch section, it will be linked next to the
.switch sections from your code. This is fine, except it is taking up that valuable
on-chip memory. So, you may want to check for this situation occasionally by
looking at the linker map file you create with the linker –m option.

4.2.5 Example Compiler Invocation

A typical build could look like:

cl6x –mr1 <other options> <C files> –z –o app.out

–m app.map farlnk.cmd

In this one step you both compile all the C files and link them together. The
C6000 executable image file is named app.out and the linker map file is named
app.map.

Refer to section 4.4.1 to learn about the linker error messages when calls go
beyond the PC relative boundary.

4.2.6 Header File Details

Look at the file linkage.h in the \include directory of the release. Depending on
the value of the _FAR_RTS macro, the macro _CODE_ACCESS is set to force
calls to RTS functions to be either user default, near, or far. The _FAR_RTS
macro is set according to the use of the –mr<n> switch.
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Table 4–3. How _FAR_RTS is Defined in Linkage.h With –mr

Option Internal RTS calls Normal RTS calls _FAR_RTS

Default Same as user Same as user Undefined

–mr0 Near Near 0

–mr1 Far Far 1

The _DATA_ACCESS macro is set to always be far.

The _IDECL macro determines how inline functions are de-
clared.

All of the RTS header files which define functions or data include linkage.h
header file. Functions are modified with _CODE_ACCESS:

extern _CODE_ACCESS void  exit(int _status);

and data is modified with _DATA_ACCESS:

 extern _DATA_ACCESS unsigned char _ctypes_[];

4.2.7 Changing RTS Data to near

If for some reason you do not want accesses of RTS data to use the far access
method, take these steps:

� Go to the \include directory of the release.

� Edit linkage.h, and change the:

#define _DATA_ACCESS far

macro to

#define _DATA_ACCESS near

to force all access of RTS data to use near access, or
change it to

#define _DATA_ACCESS

if you want RTS data access to use the same method used when accessing
ordinary user data.

� Copy linkage.h to the \lib directory.

� Go to the \lib directory.

� Replace the linkage.h entry in the source library:

ar6x –r rts.src linkage.h

� Delete linkage.h.
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� Rename or delete the object library you use when linking.

� Rebuild the object library you use with the library build command listed in
the readme file for that release.

Note that you will have to perform this process each time you install an update
of the code generation toolset.
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Structure of Assembly Code

An assembly language program must be an ASCII text file. Any line of
assembly code can include up to seven items:

� Label
� Parallel bars
� Conditions
� Instruction
� Functional unit
� Operands
� Comment

Topic Page

5.1 Labels 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Parallel Bars 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Conditions 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Instructions 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.5 Functional Units 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.6 Operands 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.7 Comments 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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5.1 Labels

A label identifies a line of code or a variable and represents a memory address
that contains either an instruction or data.

Figure 5–1 shows the position of the label in a line of assembly code. The colon
following the label is optional.

Figure 5–1. Labels in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Labels must meet the following conditions:

� The first character of a label must be a letter or an underscore (_) followed
by a letter.

� The first character of the label must be in the first column of the text file.

� Labels can include up to 32 alphanumeric characters.

5.2 Parallel Bars

An instruction that executes in parallel with the previous instruction signifies
this with parallel bars (||). This field is left blank for an instruction that does not
execute in parallel with the previous instruction.

Figure 5–2. Parallel Bars in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Labels / Parallel Bars
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5.3 Conditions

Five registers in the ’C6000 are available for conditions: A1, A2, B0, B1, and
B2. Figure 5–3 shows the position of a condition in a line of assembly code.

Figure 5–3. Conditions in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

All ’C6000 instructions are conditional:

� If no condition is specified, the instruction is always performed.

� If a condition is specified and that condition is true, the instruction
executes. For example:

With this condition ... The instruction executes if ...

[A1] A1 ! = 0

[!A1] A1 = 0

� If a condition is specified and that condition is false, the instruction does
not execute.

With this condition ... The instruction does not execute if ...

[A1] A1 = 0

[!A1] A1! = 0
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5.4 Instructions

Assembly code instructions are either directives or mnemonics:

� Assembler directives are commands for the assembler (asm6x) that
control the assembly process or define the data structures (constants and
variables) in the assembly language program. All assembler directives
begin with a period, as shown in the partial list in Table 5–1. See the
TMS320C6000 Assembly Language Tools User’s Guide for a complete
list of directives.

� Processor mnemonics are the actual microprocessor instructions that
execute at runtime and perform the operations in the program. Processor
mnemonics must begin in column 2 or greater. For more information about
processor mnemonics, see the TMS320C6000 CPU and Instruction Set
User’s Guide.

Figure 5–4 shows the position of the instruction in a line of assembly code.

Figure 5–4. Instructions in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Table 5–1. Selected TMS320C6x Directives

Directives Description

.sect  “name” Creates section of information (data or code)

.double value Reserve two consecutive 32 bits (64 bits) in memory and
fill with double-precision (64-bit) IEEE floating-point rep-
resentation of specified value

.float value Reserve 32 bits in memory and fill with single-precision
(32-bit) IEEE floating-point representation of specified
value

.int value

.long value

.word value

Reserve 32 bits in memory and fill with specified value

.short value

.half value
Reserve 16 bits in memory and fill with specified value

.byte value Reserve 8 bits in memory and fill with specified value

See the TMS320C6000 Assembly Language Tools User’s Guide for a com-
plete list of directives.
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5.5 Functional Units

The ’C6000 CPU contains eight functional units, which are shown in
Figure 5–5 and described in Table 5–2.

Figure 5–5. TMS320C6x Functional Units

Memory

Register
file A

.M2

.L2

.S2

.D2

Register
file B

.D1

.M1

.L1

.S1
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Table 5–2. Functional Units and Operations Performed  

Functional Unit Fixed–Point Operations Floating–Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare
   operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations

Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

Arithmetic operations

DP → SP, INT → DP, INT → SP
   conversion operations

.S unit (.S1, .S2) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field 
   operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register
   file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations

Quad 8-bit compare operations

Dual 16-bit shift operations

Dual 16-bit saturated arithmetic
   operations

Quad 8-bit saturated arithmetic
   operations

Compare

Reciprocal and reciprocal square–root
   operations

Absolute value operations

SP → DP conversion operations
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Table 5–2. Functional Units and Operations Performed (Continued)

Functional Unit Floating–Point OperationsFixed–Point Operations

.M unit (.M1, .M2) 16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with
   add/subtract operations

Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

32 X 32–bit fixed–point multiply operations

Floating–point multiply operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular
   address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant
   offset (.D2 only)

Load and store double words with 5-bit
   constant

Load and store non-aligned words and
   double words

5-bit constant generation

32-bit logical operations

Load doubleword with 5–bit constant offset

Note: Fixed-point operations are available on all three devices. Floating-point operations and 32 x 32-bit fixed-point multiply are
available only on the ’C67x. Additonal ’C64x functions are shown in bold.

Figure 5–6 shows the position of the unit in a line of assembly code.

Figure 5–6. Units in the Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Specifying the functional unit in the assembly code is optional. The functional
unit can be used to document which resource(s) each instruction uses.
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5.6 Operands

The ’C6000 architecture requires that memory reads and writes move data
between memory and a register. Figure 5–7 shows the position of the oper-
ands in a line of assembly code.

Figure 5–7. Operands in the Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

Instructions have the following requirements for operands in the assembly
code:

� All instructions require a destination operand.

� Most instructions require one or two source operands.

� The destination operand must be in the same register file as one source
operand.

� One source operand from each register file per execute packet can come
from the register file opposite that of the other source operand.

When an operand comes from the other register file, the unit includes an X,
as shown in Figure 5–8, indicating that the instruction is using one of the
cross paths. (See the TMS320C6000 CPU and Instruction Set Reference
Guide for more information on cross paths.)

Figure 5–8. Operands in Instructions

.L1   A0,A1,A3

.L1X   A0,B1,A3

All registers except B1 are on the same side of the CPU.

ADD

ADD

The ’C6000 instructions use three types of operands to access data:

� Register operands indicate a register that contains the data.

� Constant operands specify the data within the assembly code.

� Pointer operands contain addresses of data values.

Only the load and store instructions require and use pointer operands to
move data values between memory and a register.
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5.7 Comments

As with all programming languages, comments provide code documentation.
Figure 5–9 shows the position of the comment in a line of assembly code.

Figure 5–9. Comments in Assembly Code

label: [condition] instruction unit operands ; commentsparallel bars

The following are guidelines for using comments in assembly code:

� A comment may begin in any column when preceded by a semicolon (;).
� A comment must begin in first column when preceded by an asterisk (*).
� Comments are not required but are recommended.
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Optimizing Assembly Code
via Linear Assembly

This chapter describes methods that help you develop more efficient
assembly language programs, understand the code produced by the
assembly optimizer, and perform manual optimization.

This chapter encompasses phase 3 of the code development flow. After you
have developed and optimized your C code using the ’C6000 compiler, extract
the inefficient areas from your C code and rewrite them in linear assembly (as-
sembly code that has not been register-allocated and is unscheduled).

The assembly code shown in this chapter has been hand-optimized in order
to direct your attention to particular coding issues. The actual output from the
assembly optimizer may look different, depending on the version you are us-
ing.
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6.1 Assembly Code

The source that you write for the assembly optimizer is similar to assembly
source code; however, linear assembly does not include information about
parallel instructions, instruction latencies, or register usage. The assembly op-
timizer takes care of the difficulties of streamlining your code by:

� Finding instructions that can be executed in parallel
� Handling pipeline latencies during software pipelining
� Assigning register usage
� Defining which unit to use

Although you have the option with the ’C6000 to specify the functional unit or
register used, this may restrict the compiler’s ability to fully optimize your code.
See the TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more in-
formation.

This chapter takes you through the optimization process manually to show you
how the assembly optimizer works and to help you understand when you might
want to perform some of the optimizations manually. Each section introduces
optimization techniques in increasing complexity:

� Section 6.3 and section 6.4 begin with a dot product algorithm to show you
how to translate the C code to assembly code and then how to optimize
the linear assembly code with several simple techniques.

� Section 6.5 and section 6.6 introduce techniques for the more complex al-
gorithms associated with software pipelining, such as modulo iteration in-
terval scheduling for both single-cycle loops and multicycle loops.

� Section 6.7 uses an IIR filter algorithm to discuss the problems with loop
carry paths.

� Section 6.8 and section 6.9 discuss the problems encountered with if-
then-else statements in a loop and how loop unrolling can be used to re-
solve them.

� Section 6.10 introduces live-too-long issues in your code.

� Section 6.11 uses a simple FIR filter algorithm to discuss redundant load
elimination.

� Section 6.12 discusses the same FIR filter in terms of the interleaved
memory bank scheme used by ’C6000 devices.

� Section 6.13 and section 6.14 show you how to execute the outer loop of
the FIR filter conditionally and in parallel with the inner loop.
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Each example discusses the:

� Algorithm in C code

� Translation of the C code to linear assembly

� Dependency graph to describe the flow of data in the algorithm

� Allocation of resources (functional units, registers, and cross paths) in lin-
ear assembly

Note:

There are three types of code for the ’C6000: C/C++ code (which is input for
the C/C++ compiler), linear assembly code (which is input for the assembly
optimizer), and assembly code (which is input for the assembler).

In the three sections following section 6.2, we use the dot product to demon-
strate how to use various programming techniques to optimize both perfor-
mance and code size. Most of the examples provided in this book use fixed-
point arithmetic; however, the three sections following section 6.2 give both
fixed-point and floating-point examples of the dot product to show that the
same optimization techniques apply to both fixed- and floating-point pro-
grams.
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6.2 Assembly Optimizer Options and Directives

All directives and options that are described in the following sections are listed
in greater detail in Chapter 4 of the TMS320C6000 Optimizing C/C++ Compil-
er User’s Guide.

6.2.1 The –0n Option

Software pipelining requires the -o2 or -o3 option. Not specifying -o2 or -o3 fa-
cilitates faster compile time and ease of development through reduced opti-
mization.

6.2.2 The –mt Option and the .no_mdep Directive

Because the assembly optimizer has no idea where objects you are accessing
are located when you perform load and store instructions, the assembly opti-
mizer is by default very conservative in determining dependencies between
memory operations. For example, let us say you have the following loop de-
fined in a linear assembly file:

Example 6–1. Linear Assembly Block Copy

loop:
ldw *reg1++, reg2
add reg2, reg3, reg4
stw reg4, *reg5++

[reg6] add –1, reg6, reg6
[reg6] b loop

The assembly optimizer will make sure that each store to “reg5” completes be-
fore the next load of “reg1”. A suboptimal loop would result if the store to ad-
dress in reg5 in not in the next location to be read by “reg1”. For loops where
“reg5” is pointing to the next location of “reg1”, this is necessary and implies
that the loop has a loop carry path. See section 6.7, Loop Carry Paths, on page
6-77 for more information.

For most loops, this is not the case, and you can inform the assembly optimizer
to be more aggressive about scheduling memory operations. You can do this
either by including the “.no_mdep” (no memory dependencies) directive in
your linear assembly function or with the -mt option when you are compiling
the linear assembly file. Be aware that if you are compiling both C code and
linear assembly code in your application, that the -mt option has different
meanings for both C and linear assembly code. In this case, use the .no_mdep
directive in your linear assembly source files.
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For a full description on the implications of .no_mdep and the -mt option, refer
to Appendix B, Memory Alias Disambiguation. Refer to the TMS320C6000
Optimizing C/C++ Compiler User’s Guide for more information on both the -mt
option and the .no_mdep directive.

6.2.3 The .mdep Directive

Should you need to specify a dependence between two or more memory refer-
ences, use the .mdep directive. Annotate your code with memory reference
symbols and add the .mdep directive to your linear assembly function.

Example 6–2. Block copy With .mdep

.mdep ld1, st1
LDW *p1++ {ld1}, inp1 ; annotate memory reference ld1
; other code ...
STW outp2,*p2++ {st1} ; annotate memory reference st1

The .mdep directive indicates there is a memory dependence from the LDW
instruction to the STW instruction. This means that the STW instruction must
come after the LDW instruction. The .mdep directive does not imply that there
is a memory dependence from the STW to the LDW. Another .mdep directive
would be needed to handle that case.

6.2.4 The .mptr Directive

The .mptr directive gives the assembly optimizer information on how to avoid
memory bank conflicts. The assembly optimizer will rearrange the memory ref-
erences generated in the assembly code to avoid the memory bank conflicts
that were specified with the .mptr directive. This means that code generated
by the assembly optimizer will be faster by avoiding the memory bank conflicts.
Example 6–3 shows linear assembly code and the generated loop kernel for
a dot product without the .mptr directive.

Example 6–3. Linear Assembly Dot Product

dotp: .cproc ptr_a, ptr_b, cnt
.reg val1, val2, val3, val4
.reg prod1, prod2, sum1, sum2
zero sum1
zero sum2

loop: .trip 20 , 20
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Example 6–3.Linear Assembly Dot Product (Continued)

ldh *ptr_a++, val1
ldh *ptr_b++, val2
mpy val1, val2, prod1
add sum1, prod1, sum1
ldh *ptr_a++, val1
ldh *ptr_b++, val2
mpy val3, val4, prod2
add sum2, prod2, sum2

[cnt] add –1, cnt, cnt
[cnt] b loop

add sum1, sum2, sum1
return  sum1
.endproc

<loop kernel generated>

loop:     ; PIPED LOOP KERNEL
   [!A1]    ADD     .L2     B4,B6,B4
||          MPY     .M2X    B7,A0,B6
|| [ B0]    B       .S1     loop
||          LDH     .D2T2   *–B5(2),B6
||          LDH     .D1T1   *–A4(2),A0

   [ A1]    SUB     .S1     A1,1,A1
|| [!A1]    ADD     .L1     A5,A3,A5
||          MPY     .M1X    B6,A0,A3
|| [ B0]    ADD     .L2     –1,B0,B0
||          LDH     .D2T2   *B5++(4),B7
||          LDH     .D1T1   *A4++(4),A0

If the arrays pointed to by ptr_a and ptr_b begin on the same bank, then there
will be memory bank conflicts at every cycle of the loop due to how the LDH
instructions are paired.

By adding the .mptr directive information, you can avoid the memory bank con-
flicts. Example 6–4 shows the linear assembly dot product with the .mptr direc-
tive and the resulting loop kernel.
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Example 6–4. Linear Assembly Dot Product With .mptr

dotp: .cproc  ptr_a, ptr_b, cnt
.reg val1, val2, val3, val4
.reg prod1, prod2, sum1, sum2
zero sum1
zero sum2
.mptr ptr_a, x, 4
.mptr ptr_b, x, 4

loop: .trip 20, 20
ldh *ptr_a++, val1
ldh *ptr_b++, val2
mpy val1, val2, prod1
add sum1, prod1, sum1
ldh *ptr_a++, val3
ldh *ptr_b++, val4
mpy val3, val4, prod2
add sum2, prod2, sum2

[cnt] add –1, cnt, cnt
[cnt] b loop

add sum1, sum2, sum1
return  sum1
.endproc

<loop kernel generated>

loop:     ; PIPED LOOP KERNEL
   [!A1]    ADD     .L2     B4,B6,B4
||          MPY     .M2X    B8,A0,B6
|| [ B0]    B       .S1     loop
||          LDH     .D2T2   *B5++(4),B8
||          LDH     .D1T1   *–A4(2),A0

   [ A1]    SUB     .S1     A1,1,A1
|| [!A1]    ADD     .L1     A5,A3,A5
||          MPY     .M1X    B7,A0,A3
|| [ B0]    ADD     .L2     –1,B0,B0
||          LDH     .D2T2   *–B5(2),B7
||          LDH     .D1T1   *A4++(4),A0
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The above loop kernel has no memory bank conflicts in the case where ptr_a
and ptr_b point to the same bank. This means that you have to know how your
data is aligned in C code before using the .mptr directive in your linear assem-
bly code. The ’C6000 compiler supports pragmas in C/C++ that align your data
to a particular boundary (DATA_ALIGN, for example). Use these pragmas to
align your data properly, so that the .mptr directives work in your linear assem-
bly code.

6.2.5 The .trip Directive

The .trip directive is analogous to the _nassert intrinsic for C/C++. The .trip di-
rective looks like:

label: .trip minimum_value[, maximum value[, factor]]

For example if you wanted to say that the linear assembly loop will execute
some minimum number of times, use the .trip directive with just the first para-
meter. This example tells the assembly optimizer that the loop will iterate at
least ten times.

loop: .trip 10

You can also tell the assembly optimizer that your loop will execute exactly
some number of times by setting the minimum_value and maximum_value pa-
rameters to exactly the same value. This next example tells the assembly opti-
mizer that the loop will iterate exactly 20 times.

loop: .trip 20, 20

The maximum_value parameter can also tell the assembly optimizer that the
loop will iterate between some range. The factor parameter allows the assem-
bly optimizer to know that the loop will execute a factor of value times. For ex-
ample, the next loop will iterate either 8, 16, 24, 32, 40, or 48 times when this
particular linear assembly loop is called.

loop: .trip 8, 48, 8

The maximum_value and factor parameters are especially useful when your
loop needs to be interruptible. Refer to section 7.4.4, Getting the Most Perfor-
mance Out of Interruptible Code.
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6.3 Writing Parallel Code

One way to optimize linear assembly code is to reduce the number of execu-
tion cycles in a loop. You can do this by rewriting linear assembly instructions
so that the final assembly instructions execute in parallel.

6.3.1 Dot Product C Code

The dot product is a sum in which each element in array a is multiplied by the
corresponding element in array b. Each of these products is then accumulated
into sum. The C code in Example 6–5 is a fixed-point dot product algorithm.
The C code in Example 6–6 is a floating-point dot product algorithm.

Example 6–5. Fixed-Point Dot Product C Code

int dotp(short a[], short b[])

{
int sum, i;
sum = 0;

for(i=0; i<100; i++)
sum += a[i] * b[i];

return(sum);
}

Example 6–6. Floating-Point Dot Product C Code

float dotp(float a[], float b[])

{
int i;
float sum;
sum = 0;

for(i=0; i<100; i++)
sum += a[i] * b[i];

return(sum);
}
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6.3.2 Translating C Code to Linear Assembly

The first step in optimizing your code is to translate the C code to linear assem-
bly.

6.3.2.1 Fixed-Point Dot Product

Example 6–7 shows the linear assembly instructions used for the inner loop
of the fixed-point dot product C code. 

Example 6–7. List of Assembly Instructions for Fixed-Point Dot Product

 LDH .D1 *A4++,A2 ; load ai from memory
LDH .D1 *A3++,A5 ; load bi from memory
MPY .M1 A2,A5,A6 ; ai * bi
ADD .L1 A6,A7,A7 ; sum += (ai * bi)
SUB .S1 A1,1,A1 ; decrement loop counter

   [A1] B .S2 LOOP ; branch to loop

The load halfword (LDH) instructions increment through the a and b arrays.
Each LDH does a postincrement on the pointer. Each iteration of these instruc-
tions sets the pointer to the next halfword (16 bits) in the array. The ADD in-
struction accumulates the total of the results from the multiply (MPY) instruc-
tion. The subtract (SUB) instruction decrements the loop counter.

An additional instruction is included to execute the branch back to the top of
the loop. The branch (B) instruction is conditional on the loop counter, A1, and
executes only until A1 is 0.

6.3.2.2 Floating-Point Dot Product

Example 6–8 shows the linear assembly instructions used for the inner loop
of the floating-point dot product C code.

Example 6–8. List of Assembly Instructions for Floating-Point Dot Product

 LDW .D1 *A4++,A2 ; load ai from memory
LDW .D2 *A3++,A5 ; load bi from memory
MPYSP† .M1 A2,A5,A6 ; ai * bi
ADDSP† .L1 A6,A7,A7 ; sum += (ai * bi)
SUB .S1 A1,1,A1 ; decrement loop counter

   [A1] B .S2 LOOP ; branch to loop

† ADDSP and MPYSP are ’C67x (floating-point) instructions only.

The load word (LDW) instructions increment through the a and b arrays. Each
LDW does a postincrement on the pointer. Each iteration of these instructions
sets the pointer to the next word (32 bits) in the array. The ADDSP instruction
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accumulates the total of the results from the multiply (MPYSP) instruction. The
subtract (SUB) instruction decrements the loop counter.

An additional instruction is included to execute the branch back to the top of
the loop. The branch (B) instruction is conditional on the loop counter, A1, and
executes only until A1 is 0.

6.3.3 Linear Assembly Resource Allocation

The following rules affect the assignment of functional units for Example 6–7
and Example 6–8 (shown in the third column of each example):

� Load (LDH and LDW) instructions must use a .D unit.
� Multiply (MPY and MPYSP) instructions must use a .M unit.
� Add (ADD and ADDSP) instructions use a .L unit.
� Subtract (SUB) instructions use a .S unit.
� Branch (B) instructions must use a .S unit.

Note:

The ADD and SUB can be on the .S, .L, or .D units; however, for Example 6–7
and Example 6–8, they are assigned as listed above.

The ADDSP instruction in Example 6–8 must use a .L unit.

6.3.4 Drawing a Dependency Graph

Dependency graphs can help analyze loops by showing the flow of instruc-
tions and data in an algorithm. These graphs also show how instructions
depend on one another. The following terms are used in defining a depen-
dency graph.

� A node is a point on a dependency graph with one or more data paths
flowing in and/or out.

� The path shows the flow of data between nodes. The numbers beside
each path represent the number of cycles required to complete the instruc-
tion.

� An instruction that writes to a variable is referred to as a parent instruction
and defines a parent node.

� An instruction that reads a variable written by a parent instruction is re-
ferred to as its child and defines a child node.
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Use the following steps to draw a dependency graph:

1) Define the nodes based on the variables accessed by the instructions.
2) Define the data paths that show the flow of data between nodes.
3) Add the instructions and the latencies.
4) Add the functional units.

6.3.4.1 Fixed-Point Dot Product

Figure 6–1 shows the dependency graph for the fixed-point dot product
assembly instructions shown in Example 6–7 and their corresponding register
allocations.

Figure 6–1. Dependency Graph of Fixed-Point Dot Product
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� The two LDH instructions, which write the values of ai and bi, are parents
of the MPY instruction. It takes five cycles for the parent (LDH) instruction
to complete. Therefore, if LDH is scheduled on cycle i, then its child (MPY)
cannot be scheduled until cycle i + 5.

� The MPY instruction, which writes the product pi, is the parent of the ADD
instruction. The MPY instruction takes two cycles to complete.

� The ADD instruction adds pi (the result of the MPY) to sum. The output of
the ADD instruction feeds back to become an input on the next iteration
and, thus, creates a loop carry path. (See section 6.7 on page 6-77 for
more information on loop carry paths.)
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The dependency graph for this dot product algorithm has two separate parts
because the decrement of the loop counter and the branch do not read or write
any variables from the other part.

� The SUB instruction writes to the loop counter, cntr. The output of the SUB
instruction feeds back and creates a loop carry path.

� The branch (B) instruction is a child of the loop counter.

6.3.4.2 Floating-Point Dot Product

Similarly, Figure 6–2 shows the dependency graph for the floating-point dot
product assembly instructions shown in Example 6–8 and their corresponding
register allocations.

Figure 6–2. Dependency Graph of Floating-Point Dot Product
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� The two LDW instructions, which write the values of ai and bi, are parents
of the MPYSP instruction. It takes five cycles for the parent (LDW) instruc-
tion to complete. Therefore, if LDW is scheduled on cycle i, then its child
(MPYSP) cannot be scheduled until cycle i + 5.

� The MPYSP instruction, which writes the product pi, is the parent of the
ADDSP instruction. The MPYSP instruction takes four cycles to complete.

� The ADDSP instruction adds pi (the result of the MPYSP) to sum. The
output of the ADDSP instruction feeds back to become an input on the next
iteration and, thus, creates a loop carry path. (See section 6.7 on page
6-77 for more information on loop carry paths.)
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The dependency graph for this dot product algorithm has two separate parts
because the decrement of the loop counter and the branch do not read or write
any variables from the other part.

� The SUB instruction writes to the loop counter, cntr. The output of the SUB
instruction feeds back and creates a loop carry path.

� The branch (B) instruction is a child of the loop counter.

6.3.5 Nonparallel Versus Parallel Assembly Code

Nonparallel assembly code is performed serially, that is, one instruction follow-
ing another in sequence. This section explains how to rewrite the instructions
so that they execute in parallel.

6.3.5.1 Fixed-Point Dot Product

Example 6–9 shows the nonparallel assembly code for the fixed-point dot
product loop. The MVK instruction initializes the loop counter to 100. The
ZERO instruction clears the accumulator. The NOP instructions allow for the
delay slots of the LDH, MPY, and B instructions.

Executing this dot product code serially requires 16 cycles for each iteration
plus two cycles to set up the loop counter and initialize the accumulator; 100 it-
erations require 1602 cycles.

Example 6–9. Nonparallel Assembly Code for Fixed-Point Dot Product

MVK .S1 100, A1 ; set up loop counter
ZERO .L1 A7 ; zero out accumulator

LOOP:
LDH .D1 *A4++,A2 ; load ai from memory
LDH .D1 *A3++,A5 ; load bi from memory
NOP 4 ; delay slots for LDH
MPY .M1 A2,A5,A6 ; ai * bi
NOP ; delay slot for MPY
ADD .L1 A6,A7,A7 ; sum += (ai * bi)
SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop
NOP 5 ; delay slots for branch

;  Branch occurs here

Assigning the same functional unit to both LDH instructions slows perfor-
mance of this loop. Therefore, reassign the functional units to execute the
code in parallel, as shown in the dependency graph in Figure 6–3. The parallel
assembly code is shown in Example 6–10.
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Figure 6–3. Dependency Graph of Fixed-Point Dot Product with Parallel Assembly
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Example 6–10. Parallel Assembly Code for Fixed-Point Dot Product

MVK .S1 100, A1 ; set up loop counter
|| ZERO .L1 A7 ; zero out accumulator
LOOP:

LDH .D1 *A4++,A2 ; load ai from memory
|| LDH .D2 *B4++,B2 ; load bi from memory

SUB .S1 A1,1,A1 ; decrement loop counter
  [A1] B .S2 LOOP ; branch to loop

NOP 2 ; delay slots for LDH
MPY .M1X A2,B2,A6 ; ai * bi
NOP ; delay slots for MPY
ADD .L1 A6,A7,A7 ; sum += (ai * bi)

;  Branch occurs here

Because the loads of ai and bi do not depend on one another, both LDH
instructions can execute in parallel as long as they do not share the same
resources. To schedule the load instructions in parallel, allocate the functional
units as follows:

� ai and the pointer to ai to a functional unit on the A side, .D1
� bi and the pointer to bi to a functional unit on the B side, .D2

Because the MPY instruction now has one source operand from A and one
from B, MPY uses the 1X cross path.
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Rearranging the order of the instructions also improves the performance of the
code. The SUB instruction can take the place of one of the NOP delay slots
for the LDH instructions. Moving the B instruction after the SUB removes the
need for the NOP 5 used at the end of the code in Example 6–9.

The branch now occurs immediately after the ADD instruction so that the MPY
and ADD execute in parallel with the five delay slots required by the branch
instruction.

6.3.5.2 Floating-Point Dot Product

Similarly, Example 6–11 shows the nonparallel assembly code for the floating-
point dot product loop. The MVK instruction initializes the loop counter to 100.
The ZERO instruction clears the accumulator. The NOP instructions allow for
the delay slots of the LDW, ADDSP, MPYSP, and B instructions.

Executing this dot product code serially requires 21 cycles for each iteration
plus two cycles to set up the loop counter and initialize the accumulator; 100 it-
erations require 2102 cycles.

Example 6–11. Nonparallel Assembly Code for Floating-Point Dot Product

MVK .S1 100, A1 ; set up loop counter
ZERO .L1 A7 ; zero out accumulator

LOOP:
LDW .D1 *A4++,A2 ; load ai from memory
LDW .D1 *A3++,A5 ; load bi from memory
NOP 4 ; delay slots for LDW
MPYSP .M1 A2,A5,A6 ; ai * bi
NOP 3 ; delay slots for MPYSP
ADDSP .L1 A6,A7,A7 ; sum += (ai * bi)
NOP 3 ; delay slots for ADDSP
SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop
NOP 5 ; delay slots for branch

;  Branch occurs here

Assigning the same functional unit to both LDW instructions slows perfor-
mance of this loop. Therefore, reassign the functional units to execute the
code in parallel, as shown in the dependency graph in Figure 6–4. The parallel
assembly code is shown in Example 6–12.
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Figure 6–4. Dependency Graph of Floating-Point Dot Product with Parallel Assembly
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Example 6–12. Parallel Assembly Code for Floating-Point Dot Product

MVK .S1 100, A1 ; set up loop counter
|| ZERO .L1 A7 ; zero out accumulator
LOOP:

LDW .D1 *A4++,A2 ; load ai from memory
|| LDW .D2 *B4++,B2 ; load bi from memory

SUB .S1 A1,1,A1 ; decrement loop counter
NOP 2 ; delay slots for LDW

  [A1] B .S2 LOOP ; branch to loop
MPYSP .M1X A2,B2,A6 ; ai * bi
NOP 3 ; delay slots for MPYSP
ADDSP .L1 A6,A7,A7 ; sum += (ai * bi)

;  Branch occurs here

Because the loads of ai and bi do not depend on one another, both LDW
instructions can execute in parallel as long as they do not share the same
resources. To schedule the load instructions in parallel, allocate the functional
units as follows:

� ai and the pointer to ai to a functional unit on the A side, .D1
� bi and the pointer to bi to a functional unit on the B side, .D2

Because the MPYSP instruction now has one source operand from A and one
from B, MPYSP uses the 1X cross path.
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Rearranging the order of the instructions also improves the performance of the
code. The SUB instruction replaces one of the NOP delay slots for the LDW
instructions. Moving the B instruction after the SUB removes the need for the
NOP 5 used at the end of the code in Example 6–11 on page 6-16.

The branch now occurs immediately after the ADDSP instruction so that the
MPYSP and ADDSP execute in parallel with the five delay slots required by
the branch instruction.

Since the ADDSP finishes execution before the result is needed, the NOP 3
for delay slots is removed, further reducing cycle count.

6.3.6 Comparing Performance

Executing the fixed-point dot product code in Example 6–10 requires eight
cycles for each iteration plus one cycle to set up the loop counter and initialize
the accumulator; 100 iterations require 801 cycles.

Table 6–1 compares the performance of the nonparallel code with the parallel
code for the fixed-point example.

Table 6–1. Comparison of Nonparallel and Parallel Assembly Code for Fixed-Point
Dot Product

Code Example 100 Iterations Cycle Count

Example 6–9 Fixed-point dot product nonparallel assembly 2 + 100 � 16 1602

Example 6–10 Fixed-point dot product parallel assembly 1 + 100 � 8 801

Executing the floating-point dot product code in Example 6–12 requires ten
cycles for each iteration plus one cycle to set up the loop counter and initialize
the accumulator; 100 iterations require 1001 cycles.

Table 6–2 compares the performance of the nonparallel code with the parallel
code for the floating-point example.

Table 6–2. Comparison of Nonparallel and Parallel Assembly Code for Floating-Point
Dot Product

Code Example 100 Iterations Cycle Count

Example 6–11 Floating-point dot product nonparallel assembly 2 + 100 � 21 2102

Example 6–12 Floating-point dot product parallel assembly 1 + 100 � 10 1001
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6.4 Using Word Access for Short Data and Doubleword Access for
Floating-Point Data

The parallel code for the fixed-point example in section 6.3 uses an LDH
instruction to read a[i]. Because a[i] and a[i+1] are next to each other in
memory, you can optimize the code further by using the load word (LDW)
instruction to read a[i] and a[i+1] at the same time and load both into a single
32-bit register. (The data must be word-aligned in memory.)

In the floating-point example, the parallel code uses an LDW instruction to read
a[i]. Because a[i] and a[i+1] are next to each other in memory, you can opti-
mize the code further by using the load doubleword (LDDW) instruction to read
a[i] and a[i+1] at the same time and load both into a register pair. (The data
must be doubleword-aligned in memory.) See the TMS320C6000 CPU and In-
struction Set User’s Guide for more specific information on the LDDW instruc-
tion.

Note:

The load doubleword (LDDW) instruction is available on the ’C64x (fixed
point) and ’C67x (floating-point) device.

6.4.1 Unrolled Dot Product C Code

The fixed-point C code in Example 6–13 has the effect of unrolling the loop by
accumulating the even elements, a[i] and b[i], into sum0 and the odd elements,
a[i+1] and b[i+1], into sum1. After the loop, sum0 and sum1 are added to pro-
duce the final sum. The same is true for the floating-point C code in
Example 6–14. (For another example of loop unrolling, see section 6.9 on
page 6-94.)

Example 6–13. Fixed-Point Dot Product C Code (Unrolled)

int dotp(short a[], short b[] )
{

int sum0, sum1, sum, i;

sum0 = 0;
sum1 = 0;
for(i=0; i<100; i+=2){

sum0 += a[i] * b[i];
sum1 += a[i + 1] * b[i + 1];
}

sum = sum0 + sum1;
return(sum);

}
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Example 6–14. Floating-Point Dot Product C Code (Unrolled)

float dotp(float a[], float b[])
{

int i;
float sum0, sum1, sum;
sum0 = 0;
sum1 = 0;
for(i=0; i<100; i+=2){

sum0 += a[i] * b[i];
sum1 += a[i + 1] * b[i + 1];
}

sum = sum0 + sum1;
return(sum);

}

6.4.2 Translating C Code to Linear Assembly

The first step in optimizing your code is to translate the C code to linear assem-
bly.

6.4.2.1 Fixed-Point Dot Product

Example 6–15 shows the list of ’C6000 instructions that execute the unrolled
fixed-point dot product loop. Symbolic variable names are used instead of ac-
tual registers. Using symbolic names for data and pointers makes code easier
to write and allows the optimizer to allocate registers. However, you must use
the .reg assembly optimizer directive. See the TMS320C6000 Optimizing
C/C++ Compiler User’s Guide for more information on writing linear assembly
code.

Example 6–15. Linear Assembly for Fixed-Point Dot Product Inner Loop with LDW

LDW *a++,ai_i1 ; load ai & a1 from memory
LDW *b++,bi_i1 ; load bi & b1 from memory
MPY ai_i1,bi_i1,pi ; ai * bi
MPYH ai_i1,bi_i1,pi1 ; ai+1 * bi+1
ADD pi,sum0,sum0 ; sum0 += (ai * bi)
ADD pi1,sum1,sum1 ; sum1 += (ai+1 * bi+1)

 [cntr] SUB cntr,1,cntr ; decrement loop counter
 [cntr] B LOOP ; branch to loop

The two load word (LDW) instructions load a[i], a[i+1], b[i], and b[i+1] on each
iteration.
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Two MPY instructions are now necessary to multiply the second set of array
elements:

� The first MPY instruction multiplies the 16 least significant bits (LSBs) in
each source register: a[i] � b[i].

� The MPYH instruction multiplies the 16 most significant bits (MSBs) of
each source register: a[i+1] � b [i+1].

The two ADD instructions accumulate the sums of the even and odd elements:
sum0 and sum1.

Note:

This is true only when the ’C6x is in little-endian mode. In big-endian mode,
MPY operates on a[i+1] and b[i+1] and MPYH operates on a[i] and b[i]. See
the TMS320C6000 Peripherals Reference Guide for more information.

6.4.2.2 Floating-Point Dot Product

Example 6–16 shows the list of ’C6x instructions that execute the unrolled
floating-point dot product loop. Symbolic variable names are used instead of
actual registers. Using symbolic names for data and pointers makes code eas-
ier to write and allows the optimizer to allocate registers. However, you must
use the .reg assembly optimizer directive. See the TMS320C6000 Optimizing
C/C++ Compiler User’s Guide for more information on writing linear assembly
code.

Example 6–16. Linear Assembly for Floating-Point Dot Product Inner Loop with LDDW

LDDW *a++,ai1:ai0 ; load a[i+0] & a[i+1] from memory
LDDW *b++,bi1:bi0 ; load b[i+0] & b[i+1] from memory
MPYSP ai0,bi0,pi0 ; a[i+0] * b[i+0]
MPYSP ai1,bi1,pi1 ; a[i+1] * b[i+1]
ADDSP pi0,sum0,sum0 ; sum0 += (a[i+0] * b[i+0])
ADDSP pi1,sum1,sum1 ; sum1 += (a[i+1] * b[i+1])

 [cntr] SUB cntr,1,cntr ; decrement loop counter
 [cntr] B LOOP ; branch to loop

The two load doubleword (LDDW) instructions load a[i], a[i+1], b[i], and b[i+1]
on each iteration.

Two MPYSP instructions are now necessary to multiply the second set of array
elements.

The two ADDSP instructions accumulate the sums of the even and odd
elements: sum0 and sum1.
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6.4.3 Drawing a Dependency Graph

The dependency graph in Figure 6–5 for the fixed-point dot product shows that
the LDW instructions are parents of the MPY instructions and the MPY instruc-
tions are parents of the ADD instructions. To split the graph between the A and
B register files, place an equal number of LDWs, MPYs, and ADDs on each
side. To keep both sides even, place the remaining two instructions, B and
SUB, on opposite sides.

Figure 6–5. Dependency Graph of Fixed-Point Dot Product With LDW
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Similarly, the dependency graph in Figure 6–6 for the floating-point dot prod-
uct shows that the LDDW instructions are parents of the MPYSP instructions
and the MPYSP instructions are parents of the ADDSP instructions. To split
the graph between the A and B register files, place an equal number of
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LDDWs, MPYSPs, and ADDSPs on each side. To keep both sides even, place
the remaining two instructions, B and SUB, on opposite sides.

Figure 6–6. Dependency Graph of Floating-Point Dot Product With LDDW
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6.4.4 Linear Assembly Resource Allocation

After splitting the dependency graph for both the fixed-point and floating-point
dot products, you can assign functional units and registers, as shown in the
dependency graphs in Figure 6–7 and Figure 6–8 and in the instructions in
Example 6–17 and Example 6–18. The .M1X and .M2X represent a path in the
dependency graph crossing from one side to the other.
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Figure 6–7. Dependency Graph of Fixed-Point Dot Product With LDW (Showing 
Functional Units)
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Example 6–17. Linear Assembly for Fixed-Point Dot Product Inner Loop With LDW 
(With Allocated Resources)

LDW .D1 *A4++,A2 ; load ai and ai+1 from memory
LDW .D2 *B4++,B2 ; load bi and bi+1 from memory
MPY .M1X A2,B2,A6 ; ai * bi
MPYH .M2X A2,B2,B6 ; ai+1 * bi+1
ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop



Using Word Access for Short Data and Doubleword Access for Floating-Point Data

6-25Optimizing Assembly Code via Linear Assembly

Figure 6–8. Dependency Graph of Floating-Point Dot Product With LDDW (Showing 
Functional Units)
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Example 6–18. Linear Assembly for Floating-Point Dot Product Inner Loop With LDDW 
(With Allocated Resources)

LDDW .D1 *A4++,A3:A2 ; load ai and ai+1 from memory
LDDW .D2 *B4++,B3:B2 ; load bi and bi+1 from memory
MPYSP .M1X A2,B2,A6 ; ai * bi
MPYSP .M2X A3,B3,B6 ; ai+1 * bi+1
ADDSP .L1 A6,A7,A7 ; sum0 += (ai * bi)
ADDSP .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
SUB .S1 A1,1,A1 ; decrement loop counter

  [A1] B .S2 LOOP ; branch to loop
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6.4.5 Final Assembly

Example 6–19 shows the final assembly code for the unrolled loop of the fixed-
point dot product and Example 6–20 shows the final assembly code for the
unrolled loop of the floating-point dot product.

6.4.5.1 Fixed-Point Dot Product

Example 6–19 uses LDW instructions instead of LDH instructions.

Example 6–19. Assembly Code for Fixed-Point Dot Product With LDW 
(Before Software Pipelining)

MVK .S1 50,A1 ; set up loop counter
|| ZERO .L1 A7 ; zero out sum0 accumulator
|| ZERO .L2 B7 ; zero out sum1 accumulator

LOOP:
LDW .D1 *A4++,A2 ; load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ; load bi & bi+1 from memory

SUB .S1 A1,1,A1 ; decrement loop counter
 
[A1] B .S1 LOOP ; branch to loop

NOP 2

MPY .M1X A2,B2,A6 ; ai * bi
|| MPYH .M2X A2,B2,B6 ; ai+1 * bi+1

NOP

ADD .L1 A6,A7,A7 ; sum0+= (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1+= (ai+1 * bi+1)

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1

The code in Example 6–19 includes the following optimizations:

� The setup code for the loop is included to initialize the array pointers and
the loop counter and to clear the accumulators. The setup code assumes
that A4 and B4 have been initialized to point to arrays a and b, respectively.

� The MVK instruction initializes the loop counter.

� The two ZERO instructions, which execute in parallel, initialize the even
and odd accumulators (sum0 and sum1) to 0.

� The third ADD instruction adds the even and odd accumulators.
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6.4.5.2 Floating-Point Dot Product

Example 6–20 uses LDDW instructions instead of LDW instructions.

Example 6–20. Assembly Code for Floating-Point Dot Product With LDDW 
(Before Software Pipelining)

MVK .S1 50,A1 ; set up loop counter
|| ZERO .L1 A7 ; zero out sum0 accumulator
|| ZERO .L2 B7 ; zero out sum1 accumulator

LOOP:
LDDW .D1 *A4++,A2 ; load ai & ai+1 from memory

|| LDDW .D2 *B4++,B2 ; load bi & bi+1 from memory

SUB .S1 A1,1,A1 ; decrement loop counter
 

NOP 2

[A1] B .S1 LOOP ; branch to loop

MPYSP .M1X A2,B2,A6 ; ai * bi
|| MPYSP .M2X A3,B3,B6 ; ai+1 * bi+1

NOP 3

ADDSP .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADDSP .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

; Branch occurs here

NOP 3

ADDSP .L1X A7,B7,A4 ; sum = sum0 + sum1

NOP 3

The code in Example 6–20 includes the following optimizations:

� The setup code for the loop is included to initialize the array pointers and
the loop counter and to clear the accumulators. The setup code assumes
that A4 and B4 have been initialized to point to arrays a and b, respectively.

� The MVK instruction initializes the loop counter.

� The two ZERO instructions, which execute in parallel, initialize the even
and odd accumulators (sum0 and sum1) to 0.

� The third ADDSP instruction adds the even and odd accumulators.
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6.4.6 Comparing Performance

Executing the fixed-point dot product with the optimizations in Example 6–19
requires only 50 iterations, because you operate in parallel on both the even
and odd array elements. With the setup code and the final ADD instruction, 100
iterations of this loop require a total of 402 cycles (1 + 8 � 50 + 1).

Table 6–3 compares the performance of the different versions of the fixed-
point dot product code discussed so far.

Table 6–3. Comparison of Fixed-Point Dot Product Code With Use of LDW

Code Example 100 Iterations Cycle Count

Example 6–9 Fixed-point dot product nonparallel assembly 2 + 100 � 16 1602

Example 6–10 Fixed-point dot product parallel assembly 1 + 100 � 8 801

Example 6–19 Fixed-point dot product parallel assembly with LDW 1 + (50� 8)+ 1 402

Executing the floating-point dot product with the optimizations in
Example 6–20 requires only 50 iterations, because you operate in parallel on
both the even and odd array elements. With the setup code and the final
ADDSP instruction, 100 iterations of this loop require a total of 508 cycles (1
+ 10 � 50 + 7).

Table 6–4 compares the performance of the different versions of the floating-
point dot product code discussed so far.

Table 6–4. Comparison of Floating-Point Dot Product Code With Use of LDDW

Code Example 100 Iterations Cycle Count

Example 6–11 Floating-point dot product nonparallel assembly 2 + 100 � 21 2102

Example 6–12 Floating-point dot product parallel assembly 1 + 100 � 10 1001

Example 6–20 Floating-point dot product parallel assembly with LDDW 1 + (50� 10)+ 7 508
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6.5 Software Pipelining

This section describes the process for improving the performance of the as-
sembly code in the previous section through software pipelining.

Software pipelining is a technique used to schedule instructions from a loop
so that multiple iterations execute in parallel. The parallel resources on the
’C6x make it possible to initiate a new loop iteration before previous iterations
finish. The goal of software pipelining is to start a new loop iteration as soon
as possible.

The modulo iteration interval scheduling table is introduced in this section as
an aid to creating software-pipelined loops.

The fixed-point dot product code in Example 6–19 needs eight cycles for each
iteration of the loop: five cycles for the LDWs, two cycles for the MPYs, and one
cycle for the ADDs.

Figure 6–9 shows the dependency graph for the fixed-point dot product
instructions. Example 6–21 shows the same dot product assembly code in
Example 6–17 on page 6-24, except that the SUB instruction is now condition-
al on the loop counter (A1).

Note:

Making the SUB instruction conditional on A1 ensures that A1 stops decre-
menting when it reaches 0. Otherwise, as the loop executes five more times,
the loop counter becomes a negative number. When A1 is negative, it is non-
zero and, therefore, causes the condition on the branch to be true again. If the
SUB instruction were not conditional on A1, you would have an infinite loop.

The floating-point dot product code in Example 6–20 needs ten cycles for each
iteration of the loop: five cycles for the LDDWs, four cycles for the MPYSPs,
and one cycle for the ADDSPs.

Figure 6–10 shows the dependency graph for the floating-point dot product
instructions. Example 6–22 shows the same dot product assembly code in
Example 6–18 on page 6-25, except that the SUB instruction is now condition-
al on the loop counter (A1).

Note:

The ADDSP has 3 delay slots associated with it. The extra delay slots are
taken up by the LDDW, SUB, and NOP when executing the next cycle of the
loop. Thus an NOP 3 is not required inside the loop but is required outside
the loop prior to adding sum0 and sum1 together.
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Figure 6–9. Dependency Graph of Fixed-Point Dot Product With LDW 
(Showing Functional Units)
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Example 6–21. Linear Assembly for Fixed-Point Dot Product Inner Loop
(With Conditional SUB Instruction)

LDW .D1 *A4++,A2 ; load ai and ai+1 from memory
LDW .D2 *B4++,B2 ; load bi and bi+1 from memory
MPY .M1X A2,B2,A6 ; ai * bi
MPYH .M2X A2,B2,B6 ; ai+1 * bi+1
ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

  [A1] SUB .S1 A1,1,A1 ; decrement loop counter
  [A1] B .S2 LOOP ; branch to top of loop
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Figure 6–10. Dependency Graph of Floating-Point Dot Product With LDDW 
(Showing Functional Units)
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Example 6–22. Linear Assembly for Floating-Point Dot Product Inner Loop
(With Conditional SUB Instruction)

LDDW .D1 *A4++,A2 ; load ai and ai+1 from memory
LDDW .D2 *B4++,B2 ; load bi and bi+1 from memory
MPYSP .M1X A2,B2,A6 ; ai * bi
MPYSP .M2X A2,B2,B6 ; ai+1 * bi+1
ADDSP .L1 A6,A7,A7 ; sum0 += (ai * bi)
ADDSP .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

  [A1] SUB .S1 A1,1,A1 ; decrement loop counter
  [A1] B .S2 LOOP ; branch to top of loop
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6.5.1 Modulo Iteration Interval Scheduling

Another way to represent the performance of the code is by looking at it in a
modulo iteration interval scheduling table. This table shows how a
software-pipelined loop executes and tracks the available resources on a
cycle-by-cycle basis to ensure that no resource is used twice on any given
cycle. The iteration interval of a loop is the number of cycles between the initia-
tions of successive iterations of that loop.

6.5.1.1 Fixed-Point Example

The fixed-point code in Example 6–19 needs eight cycles for each iteration of
the loop, so the iteration interval is eight.

Table 6–5 shows a modulo iteration interval scheduling table for the fixed-point
dot product loop before software pipelining (Example 6–19). Each row repre-
sents a functional unit. There is a column for each cycle in the loop showing
the instruction that is executing on a particular cycle:

� LDWs on the .D units are issued on cycles 0, 8, 16, 24, etc.
� MPY and MPYH on the .M units are issued on cycles 5, 13, 21, 29, etc.
� ADDs on the .L units are issued on cycles 7, 15, 23, 31, etc.
� SUB on the .S1 unit is issued on cycles 1, 9, 17, 25, etc.
� B on the .S2 unit is issued on cycles 2, 10, 18, 24, etc.

Table 6–5. Modulo Iteration Interval Scheduling Table for Fixed-Point Dot Product 
(Before Software Pipelining)

Unit / Cycle 0, 8, ... 1, 9, ... 2, 10, ... 3, 11, ... 4, 12, ... 5, 13, ... 6, 14, ... 7, 15, ...

.D1 LDW

.D2 LDW

.M1 MPY

.M2 MPYH

.L1 ADD

.L2 ADD

.S1 SUB

.S2 B

In this example, each unit is used only once every eight cycles.
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6.5.1.2 Floating-Point Example

The floating-point code in Example 6–20 needs ten cycles for each iteration
of the loop, so the iteration interval is ten.

Table 6–6 shows a modulo iteration interval scheduling table for the floating-
point dot product loop before software pipelining (Example 6–20). Each row
represents a functional unit. There is a column for each cycle in the loop show-
ing the instruction that is executing on a particular cycle:

� LDDWs on the .D units are issued on cycles 0, 10, 20, 30, etc.
� MPYSPs and on the .M units are issued on cycles 5, 15, 25, 35, etc.
� ADDSPs on the .L units are issued on cycles 9, 19, 29, 39, etc.
� SUB on the .S1 unit is issued on cycles 3, 13, 23, 33, etc.
� B on the .S2 unit is issued on cycles 4, 14, 24, 34, etc.

Table 6–6. Modulo Iteration Interval Scheduling Table for Floating-Point Dot Product 
(Before Software Pipelining)

Unit /
Cycle 0, 10, ... 1, 11, ... 2, 12, ... 3, 13, ... 4, 14, ... 5, 15, ... 6, 16, ... 7, 17, ... 8, 18, ... 9, 19, ...

.D1 LDDW

.D2 LDDW

.M1 MPYSP

.M2 MPYSP

.L1 ADDSP

.L2 ADDSP

.S1 SUB

.S2 B

In this example, each unit is used only once every ten cycles.
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6.5.1.3 Determining the Minimum Iteration Interval

Software pipelining increases performance by using the resources more effi-
ciently. However, to create a fully pipelined schedule, it is helpful to first deter-
mine the minimum iteration interval.

The minimum iteration interval of a loop is the minimum number of cycles you
must wait between each initiation of successive iterations of that loop. The
smaller the iteration interval, the fewer cycles it takes to execute a loop.

Resources and data dependency constraints determine the minimum iteration
interval. The most-used resource constrains the minimum iteration interval.
For example, if four instructions in a loop all use the .S1 unit, the minimum it-
eration interval is at least 4. Four instructions using the same resource cannot
execute in parallel and, therefore, require at least four separate cycles to
execute each instruction.

With the SUB and branch instructions on opposite sides of the dependency
graph in Figure 6–9 and Figure 6–10, all eight instructions use a different func-
tional unit and no two instructions use the same cross paths (1X and 2X).
Because no two instructions use the same resource, the minimum iteration in-
terval based on resources is 1.

Note:

In this particular example, there are no data dependencies to affect the
minimum iteration interval. However, future examples may demonstrate this
constraint.

6.5.1.4 Creating a Fully Pipelined Schedule

Having determined that the minimum iteration interval is 1, you can initiate a
new iteration every cycle. You can schedule LDW (or LDDW) and MPY (or
MPYSP) instructions on every cycle.

Fixed-Point Example

Table 6–7 shows a fully pipelined schedule for the fixed-point dot product ex-
ample.
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Table 6–7. Modulo Iteration Interval Table for Fixed-Point Dot Product 
(After Software Pipelining)

Loop Prolog

Unit / Cycle 0 1 2 3 4 5 6 7, 8, 9...

.D1 LDW
*

LDW
**

LDW
***

LDW
****

LDW
*****
LDW

******
LDW

*******
LDW

.D2 LDW
*

LDW
**

LDW
***

LDW
****

LDW
*****
LDW

******
LDW

*******
LDW

.M1 MPY
*

MPY
**

MPY

.M2 MPYH
*

MPYH
**

MPYH

.L1
ADD

.L2
ADD

.S1 SUB
*

SUB
**

SUB
***

SUB
****
SUB

*****
SUB

******
SUB

.S2 B
*
B

**
B

***
B

****
B

*****
B

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: The asterisks indicate the iteration of the loop; shading indicates the single-cycle loop.

The rightmost column in Table 6–7 is a single-cycle loop that contains the
entire loop. Cycles 0–6 are loop setup code, or loop prolog.

Asterisks define which iteration of the loop the instruction is executing each
cycle. For example, the rightmost column shows that on any given cycle inside
the loop:

� The ADD instructions are adding data for iteration n.
� The MPY instructions are multiplying data for iteration n + 2 (**).
� The LDW instructions are loading data for iteration n + 7 (*******).
� The SUB instruction is executing for iteration n + 6 (******).
� The B instruction is executing for iteration n + 5 (*****).

In this case, multiple iterations of the loop execute in parallel in a software pipe-
line that is eight iterations deep, with iterations n through n + 7 executing in par-
allel. Fixed-point software pipelines are rarely deeper than the one created by
this single-cycle loop. As loop sizes grow, the number of iterations that can
execute in parallel tends to become fewer.
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Floating-Point Example

Table 6–8 shows a fully pipelined schedule for the floating-point dot product
example.

Table 6–8. Modulo Iteration Interval Table for Floating-Point Dot Product 
(After Software Pipelining)

Loop Prolog

Unit /
Cycle 0 1 2 3 4 5 6 7 8 9, 10, 11...

.D1
LDDW

*
LDDW

**
LDDW

***
LDDW

****
LDDW

*****
LDDW

******
LDDW

*******
LDDW

********
LDDW

*********
LDDW

.D2
LDDW

*
LDDW

**
LDDW

***
LDDW

****
LDDW

*****
LDDW

******
LDDW

*******
LDDW

********
LDDW

*********
LDDW

.M1
MPYSP

*
MPYSP

**
MPYSP

***
MPYSP

****
MPYSP

.M2
MPYSP

*
MPYSP

**
MPYSP

***
MPYSP

****
MPYSP

.L1
ADDSP

.L2
ADDSP

.S1 SUB
*

SUB
**

SUB
***

SUB
****
SUB

*****
SUB

******
SUB

.S2 B
*
B

**
B

***
B

****
B

*****
B

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: The asterisks indicate the iteration of the loop; shading indicates the single-cycle loop.

The rightmost column in Table 6–8 is a single-cycle loop that contains the
entire loop. Cycles 0–8 are loop setup code, or loop prolog.

Asterisks define which iteration of the loop the instruction is executing each
cycle. For example, the rightmost column shows that on any given cycle inside
the loop:

� The ADDSP instructions are adding data for iteration n.
� The MPYSP instructions are multiplying data for iteration n + 4 (****).
� The LDDW instructions are loading data for iteration n + 9 (*********).
� The SUB instruction is executing for iteration n + 6 (******).
� The B instruction is executing for iteration n + 5 (*****).
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Note:

Since the ADDSP instruction has three delay slots associated with it, the re-
sults of adding are staggered by four. That is, the first result from the ADDSP
is added to the fifth result, which is then added to the ninth, and so on. The
second result is added to the sixth, which is then added to the 10th. This is
shown in Table 6–9.

In this case, multiple iterations of the loop execute in parallel in a software pipe-
line that is ten iterations deep, with iterations n through n + 9 executing in paral-
lel. Floating-point software pipelines are rarely deeper than the one created
by this single-cycle loop. As loop sizes grow, the number of iterations that can
execute in parallel tends to become fewer.

6.5.1.5 Staggered Accumulation With a Multicycle Instruction

When accumulating results with an instruction that is multicycle (that is, has
delay slots other than 0), you must either unroll the loop or stagger the results.
When unrolling the loop, multiple accumulators collect the results so that one
result has finished executing and has been written into the accumulator before
adding the next result of the accumulator. If you do not unroll the loop, then the
accumulator will contain staggered results.

Staggered results occur when you attempt to accumulate successive results
while in the delay slots of previous execution. This can be achieved without
error if you are aware of what is in the accumulator, what will be added to that
accumulator, and when the results will be written on a given cycle (such as the
pseudo-code shown in Example 6–23).

Example 6–23. Pseudo-Code for Single-Cycle Accumulator With ADDSP

LOOP: ADDSP x,sum,sum
  || LDW *xptr++,x
  ||[cond] B cond
  ||[cond] SUB cond,1,cond

Table 6–9 shows the results of the loop kernel for a single-cycle accumulator
using a multicycle add instruction; in this case, the ADDSP, which has three
delay slots (a 4-cycle instruction).



Software Pipelining

 6-38

Table 6–9. Software Pipeline Accumulation Staggered Results Due to Three-Cycle 
Delay 

Cycle # Pseudoinstruction
Current value of

pseudoregister sum Written expected result

0 ADDSP x(0), sum, sum 0 ;  cycle 4 sum = x(0)

1 ADDSP x(1), sum, sum 0 ;  cycle 5 sum = x(1)

2 ADDSP x(2), sum, sum 0 ;  cycle 6 sum = x(2)

3 ADDSP x(3), sum, sum 0 ;  cycle 7 sum = x(3)

4 ADDSP x(4), sum, sum x(0) ;  cycle 8 sum = x(0) + x(4)

5 ADDSP x(5), sum, sum x(1) ;  cycle 9 sum = x(1) + x(5)

6 ADDSP x(6), sum, sum x(6) ;  cycle 10 sum = x(2) + x(6)

7 ADDSP x(7), sum, sum x(7) ;  cycle 11 sum = x(3) + x(7)

8 ADDSP x(8), sum, sum x(0) + x(4) ;  cycle 12 sum = x(0) + x(8)

�
�
�

i + j† ADDSP x(i+j), sum, sum x(j) + x(j+4) + x(j+8) … x(i–4+j) ; cycle i + j + 4 sum = x(j) + x(j+4) +
x(j+8) … x(i–4+j) + x(i+j)

�
�
�

† where i is a multiple of 4

The first value of the array x, x(0) is added to the accumulator (sum) on cycle
0, but the result is not ready until cycle 4. This means that on cycle 1 when x(1)
is added to the accumulator (sum), sum has no value in it from x(0). Thus,
when this result is ready on cycle 5, sum will have the value x(1) in it, instead
of the value x(0) + x(1). When you reach cycle 4, sum will have the value x(0)
in it and the value x(4) will be added to that, causing sum = x(0) + x(4) on
cycle 8. This is continuously repeated, resulting in four separate accumula-
tions (using the register “sum”).

The current value in the accumulator “sum” depends on which iteration is be-
ing done. After the completion of the loop, the last four sums should be written
into separate registers and then added together to give the final result. This
is shown in Example 6–27 on page 6-43.
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6.5.2 Using the Assembly Optimizer to Create Optimized Loops

Example 6–24 shows the linear assembly code for the full fixed-point dot prod-
uct loop. Example 6–25 shows the linear assembly code for the full floating-
point dot product loop. You can use this code as input to the assembly optimiz-
er tool to create software-pipelined loops automatically. See the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-
tion on the assembly optimizer.

Example 6–24. Linear Assembly for Full Fixed-Point Dot Product

.global _dotp

_dotp:  .cproc   a, b

.reg sum, sum0, sum1, cntr 

.reg ai_i1, bi_i1, pi, pi1
  

MVK 50,cntr ; cntr = 100/2
ZERO sum0 ; multiply result = 0
ZERO sum1 ; multiply result = 0

 
LOOP: .trip 50

LDW *a++,ai_i1 ; load ai & ai+1 from memory
LDW *b++,bi_i1 ; load bi & bi+1 from memory
MPY ai_i1,bi_i1,pi ; ai * bi
MPYH ai_i1,bi_i1,pi1 ; ai+1 * bi+1
ADD pi,sum0,sum0 ; sum0 += (ai * bi)
ADD pi1,sum1,sum1 ; sum1 += (ai+1 * bi+1)

 [cntr] SUB cntr,1,cntr ; decrement loop counter
 [cntr] B LOOP ; branch to loop

ADD sum0,sum1,sum ; compute final result

.return sum

.endproc

Resources such as functional units and 1X and 2X cross paths do not have
to be specified because these can be allocated automatically by the assembly
optimizer.
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Example 6–25. Linear Assembly for Full Floating-Point Dot Product

.global _dotp

_dotp:  .cproc   a, b

.reg sum, sum0, sum1, a, b 

.reg ai:ai1, bi:bi1, pi, pi1
  

MVK 50,cntr ; cntr = 100/2
ZERO sum0 ; multiply result = 0
ZERO sum1 ; multiply result = 0

 
LOOP: .trip 50

LDDW *a++,ai:ai1 ; load ai & ai+1 from memory
LDDW *b++,bi:bi1 ; load bi & bi+1 from memory
MPYSP a0,b0,pi ; ai * bi
MPYSP a1,b1,pi1 ; ai+1 * bi+1
ADDSP pi,sum0,sum0 ; sum0 += (ai * bi)
ADDSP pi1,sum1,sum1 ; sum1 += (ai+1 * bi+1)

 [cntr] SUB cntr,1,cntr ; decrement loop counter
 [cntr] B LOOP ; branch to loop

ADDSP sum,sum1,sum0 ; compute final result

.return sum

.endproc

6.5.3 Final Assembly

Example 6–26 shows the assembly code for the fixed-point software-pipe-
lined dot product in Table 6–7 on page 6-35. Example 6–27 shows the assem-
bly code for the floating-point software-pipelined dot product in Table 6–8 on
page 6-36. The accumulators are initialized to 0 and the loop counter is set up
in the first execute packet in parallel with the first load instructions. The aster-
isks in the comments correspond with those in Table 6–7 and Table 6–8, re-
spectively.

Note:

All instructions executing in parallel constitute an execute packet. An exe-
cute packet can contain up to eight instructions.

See the TMS320C6000 CPU and Instruction Set Reference Guide for more
information about pipeline operation.
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6.5.3.1 Fixed-Point Example

Multiple branch instructions are in the pipe. The first branch in the fixed-point
dot product is issued on cycle 2 but does not actually branch until the end of
cycle 7 (after five delay slots). The branch target is the execute packet defined
by the label LOOP. On cycle 7, the first branch returns to the same execute
packet, resulting in a single-cycle loop. On every cycle after cycle 7, a branch
executes back to LOOP until the loop counter finally decrements to 0. Once
the loop counter is 0, five more branches execute because they are already
in the pipe.

Executing the dot product code with the software pipelining as shown in
Example 6–26 requires a total of 58 cycles (7 + 50 + 1), which is a significant
improvement over the 402 cycles required by the code in Example 6–19.

Note:

The code created by the assembly optimizer will not completely match the
final assembly code shown in this and future sections because different ver-
sions of the tool will produce slightly different code. However, the inner loop
performance (number of cycles per iteration) should be similar.
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Example 6–26. Assembly Code for Fixed-Point Dot Product (Software Pipelined)
LDW .D1 *A4++,A2 ; load ai & ai+1 from memory

|| LDW .D2 *B4++,B2 ; load bi & bi+1 from memory
|| MVK .S1 50,A1 ; set up loop counter
|| ZERO .L1 A7 ; zero out sum0 accumulator
|| ZERO .L2 B7 ; zero out sum1 accumulator
 

[A1] SUB .S1 A1,1,A1 ; decrement loop counter
|| LDW .D1 *A4++,A2 ;* load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;* load bi & bi+1 from memory
 

[A1] SUB .S1 A1,1,A1 ;* decrement loop counter
|| [A1] B .S2 LOOP ; branch to loop
|| LDW .D1 *A4++,A2 ;** load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;** load bi & bi+1 from memory
 
  [A1] SUB .S1 A1,1,A1 ;** decrement loop counter
|| [A1] B .S2 LOOP ;* branch to loop
|| LDW .D1 *A4++,A2 ;*** load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;*** load bi & bi+1 from memory
 
 [A1] SUB .S1 A1,1,A1 ;*** decrement loop counter
|| [A1] B .S2 LOOP ;** branch to loop
|| LDW .D1 *A4++,A2 ;**** load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;**** load bi & bi+1 from memory

MPY .M1X A2,B2,A6 ; ai * bi
|| MPYH .M2X A2,B2,B6 ; ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter
||[A1] B .S2 LOOP ;*** branch to loop
|| LDW .D1 *A4++,A2 ;***** ld ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;***** ld bi & bi+1 from memory

MPY .M1X A2,B2,A6 ;* ai * bi
|| MPYH .M2X A2,B2,B6 ;* ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter
||[A1] B .S2 LOOP ;**** branch to loop
|| LDW .D1 *A4++,A2 ;****** ld ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;****** ld bi & bi+1 from memory

LOOP:
  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
||[A1] B .S2 LOOP ;***** branch to loop
|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory
|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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6.5.3.2 Floating-Point Example

The first branch in the floating-point dot product is issued on cycle 4 but does
not actually branch until the end of cycle 9 (after five delay slots). The branch
target is the execute packet defined by the label LOOP. On cycle 9, the first
branch returns to the same execute packet, resulting in a single-cycle loop. On
every cycle after cycle 9, a branch executes back to LOOP until the loop count-
er finally decrements to 0. Once the loop counter is 0, five more branches
execute because they are already in the pipe.

Executing the floating-point dot product code with the software pipelining as
shown in Example 6–27 requires a total of 74 cycles (9 + 50 + 15), which is a
significant improvement over the 508 cycles required by the code in
Example 6–20.

Example 6–27. Assembly Code for Floating-Point Dot Product (Software Pipelined)

MVK .S1 50,A1 ; set up loop counter
|| ZERO .L1 A8 ; sum0 = 0
|| ZERO .L2 B8 ; sum1 = 0
|| LDDW .D1 A4++,A7:A6 ; load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ; load bi & bi + 1 from memory
 

LDDW .D1 A4++,A7:A6 ;* load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;* load bi & bi + 1 from memory
 

LDDW .D1 A4++,A7:A6 ;** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;** load bi & bi + 1 from memory
 

LDDW .D1 A4++,A7:A6 ;*** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;*** load bi & bi + 1 from memory
||[A1] SUB .S1 A1,1,A1 ; decrement loop counter
 

LDDW .D1 A4++,A7:A6 ;**** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;**** load bi & bi + 1 from memory
||[A1] B .S2 LOOP ; branch to loop
||[A1] SUB .S1 A1,1,A1 ;* decrement loop counter
 

LDDW .D1 A4++,A7:A6 ;***** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;***** load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ; pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1
||[A1] B .S2 LOOP ;* branch to loop
||[A1] SUB .S1 A1,1,A1 ;** decrement loop counter
 

LDDW .D1 A4++,A7:A6 ;****** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;****** load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;* pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;* pi1 = a1  b1
||[A1] B .S2 LOOP ;** branch to loop
||[A1] SUB .S1 A1,1,A1 ;*** decrement loop counter
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Example 6–27. Assembly Code for Floating-Point Dot Product (Software Pipelined)
(Continued)

LDDW .D1 A4++,A7:A6 ;******* load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;******* load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;** pi1 = a1  b1
||[A1] B .S2 LOOP ;*** branch to loop
||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

LDDW .D1 A4++,A7:A6 ;******** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;******** load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;*** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;*** pi1 = a1  b1
||[A1] B .S2 LOOP ;**** branch to loop
||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter

LOOP:
LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ;sum1 += (ai+1  bi+1)
||[A1] B .S2 LOOP ;***** branch to loop
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
; Branch occurs here
 

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)
 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)
 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)
 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)
 

NOP ; wait for B0
 

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)
 

NOP ; wait for next B0
 

ADDSP .L2X A0,B0,B5 ; sum(23) = sum(2) + sum(3)
 

NOP 3
 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)
 

NOP 3 ;
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6.5.3.3 Removing Extraneous Instructions

The code in Example 6–26 and Example 6–27 executes extra iterations of
some of the instructions in the loop. The following operations occur in parallel
on the last cycle of the loop in Example 6–26:

� Iteration 50 of the ADD instructions
� Iteration 52 of the MPY and MPYH instructions
� Iteration 57 of the LDW instructions

The following operations occur in parallel on the last cycle of the loop in
Example 6–27:

� Iteration 50 of the ADDSP instructions
� Iteration 54 of the MPYSP instructions
� Iteration 59 of the LDDW instructions

In most cases, extra iterations are not a problem; however, when extraneous
LDWs and LDDWs access unmapped memory, you can get unpredictable re-
sults. If the extraneous instructions present a potential problem, remove the
extraneous load and multiply instructions by adding an epilog like that included
in the second part of Example 6–28 on page 6-47 and Example 6–29 on
page 6-48.

Fixed-Point Example

To eliminate LDWs in the fixed-point dot product from iterations 51 through 57,
run the loop seven fewer times. This brings the loop counter to 43 (50 – 7),
which means you still must execute seven more cycles of ADD instructions
and five more cycles of MPY instructions. Five pairs of MPYs and seven pairs
of ADDs are now outside the loop. The LDWs, MPYs, and ADDs all execute
exactly 50 times. (The shaded areas of Example 6–28 indicate the changes
in this code.)

Executing the dot product code in Example 6–28 with no extraneous LDWs
still requires a total of 58 cycles (7 + 43 + 7 + 1), but the code size is now larg-
er.

Floating-Point Example

To eliminate LDDWs in the floating-point dot product from iterations 51 through
59, run the loop nine fewer times. This brings the loop counter to 41 (50 – 9),
which means you still must execute nine more cycles of ADDSP instructions
and five more cycles of MPYSP instructions. Five pairs of MPYSPs and nine
pairs of ADDSPs are now outside the loop. The LDDWs, MPYSPs, and
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ADDSPs all execute exactly 50 times. (The shaded areas of Example 6–29 in-
dicate the changes in this code.)

Executing the dot product code in Example 6–29 with no extraneous LDDWs
still requires a total of 74 cycles (9 + 41 + 9 + 15), but the code size is now larg-
er.

Example 6–28. Assembly Code for Fixed-Point Dot Product (Software Pipelined 
With No Extraneous Loads) 

LDW .D1 *A4++,A2 ; load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ; load bi & bi+1 from memory
|| MVK .S1 43,A1 ; set up loop counter
|| ZERO .L1 A7 ; zero out sum0 accumulator
|| ZERO .L2 B7 ; zero out sum1 accumulator
 
  [A1] SUB .S1 A1,1,A1 ; decrement loop counter
|| LDW .D1 *A4++,A2 ;* load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;* load bi & bi+1 from memory
 
  [A1] SUB .S1 A1,1,A1 ;* decrement loop counter
||[A1] B .S2 LOOP ; branch to loop
|| LDW .D1 *A4++,A2 ;** load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;** load bi & bi+1 from memory
 
  [A1] SUB .S1 A1,1,A1 ;** decrement loop counter
||[A1] B .S2 LOOP ;* branch to loop
|| LDW .D1 *A4++,A2 ;*** load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;*** load bi & bi+1 from memory

 [A1] SUB .S1 A1,1,A1 ;*** decrement loop counter
||[A1] B .S2 LOOP ;** branch to loop
|| LDW .D1 *A4++,A2 ;**** load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;**** load bi & bi+1 from memory

MPY .M1X A2,B2,A6 ; ai * bi
|| MPYH .M2X A2,B2,B6 ; ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter
||[A1] B .S2 LOOP ;*** branch to loop
|| LDW .D1 *A4++,A2 ;***** ld ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;***** ld bi & bi+1 from memory

MPY .M1X A2,B2,A6 ;* ai * bi
|| MPYH .M2X A2,B2,B6 ;* ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter
||[A1] B .S2 LOOP ;**** branch to loop
|| LDW .D1 *A4++,A2 ;****** ld ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;****** ld bi & bi+1 from memory
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Example 6–28. Assembly Code for Fixed-Point Dot Product (Software Pipelined 
With No Extraneous Loads) (Continued)

LOOP:
  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
||[A1] B .S2 LOOP ;***** branch to loop
|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory
|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADDs MPYs

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

1

1

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

2

2

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

3

3

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

4

4

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1

5

5

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

6

ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)

7

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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Example 6–29. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With No Extraneous Loads)

MVK .S1 41,A1 ; set up loop counter
|| ZERO .L1 A8 ; sum0 = 0
|| ZERO .L2 B8 ; sum1 = 0
|| LDDW .D1 A4++,A7:A6 ; load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ; load bi & bi + 1 from memory
 

LDDW .D1 A4++,A7:A6 ;* load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;* load bi & bi + 1 from memory
 

LDDW .D1 A4++,A7:A6 ;** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;** load bi & bi + 1 from memory
 

LDDW .D1 A4++,A7:A6 ;*** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;*** load bi & bi + 1 from memory
||[A1] SUB .S1 A1,1,A1 ; decrement loop counter
 

LDDW .D1 A4++,A7:A6 ;**** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;**** load bi & bi + 1 from memory
||[A1] B .S2 LOOP ; branch to loop
||[A1] SUB .S1 A1,1,A1 ;* decrement loop counter
 

LDDW .D1 A4++,A7:A6 ;***** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;***** load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ; pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1
||[A1] B .S2 LOOP ;* branch to loop
||[A1] SUB .S1 A1,1,A1 ;** decrement loop counter
 

LDDW .D1 A4++,A7:A6 ;****** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;****** load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;* pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;* pi1 = a1  b1
||[A1] B .S2 LOOP ;** branch to loop
||[A1] SUB .S1 A1,1,A1 ;*** decrement loop counter

LDDW .D1 A4++,A7:A6 ;******* load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;******* load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;** pi1 = a1  b1
||[A1] B .S2 LOOP ;*** branch to loop
||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

LDDW .D1 A4++,A7:A6 ;******** load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;******** load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;*** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;*** pi1 = a1  b1
||[A1] B .S2 LOOP ;**** branch to loop
||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter
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Example 6–29. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With No Extraneous Loads) (Continued

1

ADDSPs MPYSPs

1

2

2

3

3

4

4

5

5

6

7

8

9

LOOP:

LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
||[A1] B .S2 LOOP ;***** branch to loop
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
; Branch occurs here
 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
 

MPYSP .M1X A6,B6,A5 ; pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)

MPYSP .M1X A6,B6,A5 ; pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ; pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
 

ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
 

ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
 
 ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
 

ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
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Example 6–29. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With No Extraneous Loads) (Continued)

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)
 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)
 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)
 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)
 

NOP ; wait for B0
 

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)
 

NOP ; wait for next B0
 

ADDSP .L2X A0,B0,B5 ; sum(23) = sum(2) + sum(3)
 

NOP 3
 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)
 

NOP 3 ;
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6.5.3.4 Priming the Loop

Although Example 6–28 and Example 6–29 execute as fast as possible, the
code size can be smaller without significantly sacrificing performance. To help
reduce code size, you can use a technique called priming the loop. Assuming
that you can handle extraneous loads, start with Example 6–26 or
Example 6–27, which do not have epilogs and, therefore, contain fewer
instructions. (This technique can be used equally well with Example 6–28 or
Example 6–29.)

Fixed-Point Example

To eliminate the prolog of the fixed-point dot product and, therefore, the extra
LDW and MPY instructions, begin execution at the loop body (at the LOOP
label). Eliminating the prolog means that:

� Two LDWs, two MPYs, and two ADDs occur in the first execution cycle of
the loop.

� Because the first LDWs require five cycles to write results into a register,
the MPYs do not multiply valid data until after the loop executes five times.
The ADDs have no valid data until after seven cycles (five cycles for the
first LDWs and two more cycles for the first valid MPYs).

Example 6–30 shows the loop without the prolog but with four new instructions
that zero the inputs to the MPY and ADD instructions. Making the MPYs and
ADDs use 0s before valid data is available ensures that the final accumulator
values are unaffected. (The loop counter is initialized to 57 to accommodate
the seven extra cycles needed to prime the loop.)

Because the first LDWs are not issued until after seven cycles, the code in
Example 6–30 requires a total of 65 cycles (7 + 57+ 1). Therefore, you are re-
ducing the code size with a slight loss in performance.
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Example 6–30. Assembly Code for Fixed-Point Dot Product (Software Pipelined With 
Removal of Prolog and Epilog)

MVK .S1 57,A1 ; set up loop counter

  [A1] SUB .S1 A1,1,A1 ; decrement loop counter
|| ZERO .L1 A7 ; zero out sum0 accumulator
|| ZERO .L2 B7 ; zero out sum1 accumulator

  [A1] SUB .S1 A1,1,A1 ;* decrement loop counter
||[A1] B .S2 LOOP ; branch to loop
|| ZERO .L1 A6 ; zero out add input
|| ZERO .L2 B6 ; zero out add input

  [A1] SUB .S1 A1,1,A1 ;** decrement loop counter
||[A1] B .S2 LOOP ;* branch to loop
|| ZERO .L1 A2 ; zero out mpy input
|| ZERO .L2 B2 ; zero out mpy input

  [A1] SUB .S1 A1,1,A1 ;*** decrement loop counter
||[A1] B .S2 LOOP ;** branch to loop

  [A1] SUB .S1 A1,1,A1 ;**** decrement loop counter
||[A1] B .S2 LOOP ;*** branch to loop

  [A1] SUB .S1 A1,1,A1 ;***** decrement loop counter
||[A1] B .S2 LOOP ;**** branch to loop

LOOP:
  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
||[A1] B .S2 LOOP ;***** branch to loop
|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory
|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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Floating-Point Example

To eliminate the prolog of the floating-point dot product and, therefore, the
extra LDDW and MPYSP instructions, begin execution at the loop body (at the
LOOP label). Eliminating the prolog means that:

� Two LDDWs, two MPYSPs, and two ADDSPs occur in the first execution
cycle of the loop.

� Because the first LDDWs require five cycles to write results into a register,
the MPYSPs do not multiply valid data until after the loop executes five
times. The ADDSPs have no valid data until after nine cycles (five cycles
for the first LDDWs and four more cycles for the first valid MPYSPs).

Example 6–31 shows the loop without the prolog but with four new instructions
that zero the inputs to the MPYSP and ADDSP instructions. Making the
MPYSPs and ADDSPs use 0s before valid data is available ensures that the
final accumulator values are unaffected. (The loop counter is initialized to 59
to accommodate the nine extra cycles needed to prime the loop.)

Because the first LDDWs are not issued until after nine cycles, the code in
Example 6–31 requires a total of 81 cycles (7 + 59+ 15). Therefore, you are
reducing the code size with a slight loss in performance.

Example 6–31. Assembly Code for Floating-Point Dot Product (Software Pipelined With 
Removal of Prolog and Epilog)

MVK .S1 59,A1 ; set up loop counter
 

ZERO .L1 A7 ; zero out mpysp input
|| ZERO .L2 B7 ; zero out mpysp input
||[A1] SUB .S1 A1,1,A1 ; decrement loop counter
 
  [A1] B .S2 LOOP ; branch to loop
||[A1] SUB .S1 A1,1,A1 ;* decrement loop counter
|| ZERO .L1 A8 ; zero out sum0 accumulator
|| ZERO .L2 B8 ; zero out sum0 accumulator
 
  [A1] B .S2 LOOP ;* branch to loop
||[A1] SUB .S1 A1,1,A1 ;** decrement loop counter
|| ZERO .L1 A5 ; zero out addsp input
|| ZERO .L2 B5 ; zero out addsp input
 
  [A1] B .S2 LOOP ;** branch to loop
||[A1] SUB .S1 A1,1,A1 ;*** decrement loop counter
|| ZERO .L1 A6 ; zero out mpysp input
|| ZERO .L2 B6 ; zero out mpysp input
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Example 6–31. Assembly Code for Floating-Point Dot Product (Software Pipelined With 
Removal of Prolog and Epilog) (Continued)

  [A1] B .S2 LOOP ;*** branch to loop
||[A1] SUB .S1 A1,1,A1 ;**** decrement loop counter

  [A1] B .S2 LOOP ;**** branch to loop
||[A1] SUB .S1 A1,1,A1 ;***** decrement loop counter

LOOP:
LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory

|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
||[A1] B .S2 LOOP ;***** branch to loop
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
; Branch occurs here
 

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)
 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)
 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)
 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)
 

NOP ; wait for B0

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)
 

NOP ; wait for next B0
 

ADDSP .L2X A0,B0,B5 ; sum(23) = sum(2) + sum(3)
 

NOP 3
 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)
 

NOP 3 ;
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6.5.3.5 Removing Extra SUB Instructions

To reduce code size further, you can remove extra SUB instructions. If you
know that the loop count is at least 6, you can eliminate the extra SUB instruc-
tions as shown in Example 6–32 and Example 6–33. The first five branch
instructions are made unconditional, because they always execute. (If you do
not know that the loop count is at least 6, you must keep the SUB instructions
that decrement before each conditional branch as in Example 6–30 and
Example 6–31.) Based on the elimination of six SUB instructions, the loop
counter is now 51 (57 – 6) for the fixed-point dot product and 53 (59 – 6) for
the floating-point dot product. This code shows some improvement over
Example 6–30 and Example 6–31. The loop in Example 6–32 requires 63
cycles (5 + 57 + 1) and the loop in Example 6–31 requires 79 cycles
(5 + 59 + 15).

Example 6–32. Assembly Code for Fixed-Point Dot Product (Software Pipelined 
With Smallest Code Size)

B .S2 LOOP ; branch to loop
|| MVK .S1 51,A1 ; set up loop counter

B .S2 LOOP ;* branch to loop

B .S2 LOOP ;** branch to loop
|| ZERO .L1 A7 ; zero out sum0 accumulator
|| ZERO .L2 B7 ; zero out sum1 accumulator

B .S2 LOOP ;*** branch to loop
|| ZERO .L1 A6 ; zero out add input
|| ZERO .L2 B6 ; zero out add input

B .S2 LOOP ;**** branch to loop
|| ZERO .L1 A2 ; zero out mpy input
|| ZERO .L2 B2 ; zero out mpy input

LOOP:
  ADD .L1 A6,A7,A7 ; sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ; sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;** ai * bi
|| MPYH .M2X A2,B2,B6 ;** ai+1 * bi+1
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
||[A1] B .S2 LOOP ;***** branch to loop
|| LDW .D1 *A4++,A2 ;******* ld ai & ai+1 fm memory
|| LDW .D2 *B4++,B2 ;******* ld bi & bi+1 fm memory

; Branch occurs here

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1
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Example 6–33. Assembly Code for Floating-Point Dot Product (Software Pipelined 
With Smallest Code Size)

B .S2 LOOP ; branch to loop
|| MVK .S1 53,A1 ; set up loop counter
 

B .S2 LOOP ;* branch to loop
|| ZERO .L1 A7 ; zero out mpysp input
|| ZERO .L2 B7 ; zero out mpysp input
 

B .S2 LOOP ;** branch to loop
|| ZERO .L1 A8 ; zero out sum0 accumulator
|| ZERO .L2 B8 ; zero out sum0 accumulator
 

B .S2 LOOP ;*** branch to loop
|| ZERO .L1 A5 ; zero out addsp input
|| ZERO .L2 B5 ; zero out addsp input
 

B .S2 LOOP ;**** branch to loop
|| ZERO .L1 A6 ; zero out mpysp input
|| ZERO .L2 B6 ; zero out mpysp input
 
LOOP:

LDDW .D1 A4++,A7:A6 ;********* load ai & ai + 1 from memory
|| LDDW .D2 B4++,B7:B6 ;********* load bi & bi + 1 from memory
|| MPYSP .M1X A6,B6,A5 ;**** pi = a0  b0
|| MPYSP .M2X A7,B7,B5 ;**** pi1 = a1  b1
|| ADDSP .L1 A5,A8,A8 ; sum0 += (ai  bi)
|| ADDSP .L2 B5,B8,B8 ; sum1 += (ai+1  bi+1)
||[A1] B .S2 LOOP ;***** branch to loop
||[A1] SUB .S1 A1,1,A1 ;****** decrement loop counter
; Branch occurs here
 

ADDSP .L1X A8,B8,A0 ; sum(0) = sum0(0) + sum1(0)
 

ADDSP .L2X A8,B8,B0 ; sum(1) = sum0(1) + sum1(1)
 

ADDSP .L1X A8,B8,A0 ; sum(2) = sum0(2) + sum1(2)
 

ADDSP .L2X A8,B8,B0 ; sum(3) = sum0(3) + sum1(3)
 

NOP ; wait for B0
 

ADDSP .L1X A0,B0,A5 ; sum(01) = sum(0) + sum(1)
 

NOP ; wait for next B0
 

ADDSP .L2X  A0,B0,B5 ; sum(23) = sum(2) + sum(3)
 

NOP 3
 

ADDSP .L1X A5,B5,A4 ; sum = sum(01) + sum(23)
 

NOP 3 ;
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6.5.4 Comparing Performance

Table 6–10 compares the performance of all versions of the fixed-point dot
product code. Table 6–11 compares the performance of all versions of the
floating-point dot product code.

Table 6–10. Comparison of Fixed-Point Dot Product Code Examples

Code Example 100 Iterations Cycle Count

Example 6–9 Fixed-point dot product linear assembly 2 + 100 � 16 1602

Example 6–10 Fixed-point dot product parallel assembly 1 + 100 � 8 801

Example 6–19 Fixed-point dot product parallel assembly with LDW 1 + (50 � 8) + 1 402

Example 6–26 Fixed-point software-pipelined dot product 7 + 50 + 1 58

Example 6–28 Fixed-point software-pipelined dot product with no extrane-
ous loads

7 + 43 + 7 + 1 58

Example 6–30 Fixed-point software-pipelined dot product with no prolog or
epilog

7 + 57 + 1 65

Example 6–32 Fixed-point software-pipelined dot product with smallest
code size

5 + 57 + 1 63

Table 6–11. Comparison of Floating-Point Dot Product Code Examples

Code Example 100 Iterations Cycle Count

Example 6–11 Floating-point dot product nonparallel assembly 2 + 100 � 21 2102

Example 6–12 Floating-point dot product parallel assembly 1 + 100 � 10 1001

Example 6–20 Floating-point dot product parallel assembly with LDDW 1 + (50 � 10) + 7 508

Example 6–27 Floating-point software-pipelined dot product 9 + 50 + 15 74

Example 6–29 Floating-point software-pipelined dot product with no extra-
neous loads

9 + 41 + 9 + 15 74

Example 6–31 Floating-point software-pipelined dot product with no prolog
or epilog

7 + 59 + 15 81

Example 6–33 Floating-point software-pipelined dot product with small-
est code size

5 + 59 + 15 79
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6.6 Modulo Scheduling of Multicycle Loops

Section 6.5 demonstrated the modulo-scheduling technique for the dot
product code. In that example of a single-cycle loop, none of the instructions
used the same resources. Multicycle loops can present resource conflicts
which affect modulo scheduling. This section describes techniques to deal
with this issue.

6.6.1 Weighted Vector Sum C Code 

Example 6–34 shows the C code for a weighted vector sum.

Example 6–34. Weighted Vector Sum C Code

void w_vec(short a[],short b[],short c[],short m)
{

int i;

for (i=0; i<100; i++) {
c[i] = ((m * a[i]) >> 15) + b[i];
}

}

6.6.2 Translating C Code to Linear Assembly

Example 6–35 shows the linear assembly that executes the weighted vector
sum in Example 6–34. This linear assembly does not have functional units as-
signed. The dependency graph will help in those decisions. However, before
looking at the dependency graph, the code can be optimized further.

Example 6–35. Linear Assembly for Weighted Vector Sum Inner Loop

LDH *aptr++,ai ; ai
LDH *bptr++,bi ; bi
MPY m,ai,pi ; m * ai
SHR pi,15,pi_scaled ; (m * ai) >> 15
ADD pi_scaled,bi,ci ; ci = (m * ai) >> 15 + bi
STH ci,*cptr++ ; store ci

[cntr]SUB cntr,1,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop
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6.6.3 Determining the Minimum Iteration Interval

Example 6–35 includes three memory operations in the inner loop (two LDHs
and the STH) that must each use a .D unit. Only two .D units are available on
any single cycle; therefore, this loop requires at least two cycles. Because no
other resource is used more than twice, the minimum iteration interval for this
loop is 2.

Memory operations determine the minimum iteration interval in this example.
Therefore, before scheduling this assembly code, unroll the loop and perform
LDWs to help improve the performance.

6.6.3.1 Unrolling the Weighted Vector Sum C Code 

Example 6–36 shows the C code for an unrolled version of the weighted vector
sum.

Example 6–36. Weighted Vector Sum C Code (Unrolled)

void w_vec(short a[],short b[],short c[],short m)
{

int i;

for (i=0; i<100; i+=2) {
c[i] = ((m * a[i]) >> 15) + b[i];
c[i+1] = ((m * a[i+1]) >> 15) + b[i+1];
}

}
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6.6.3.2 Translating Unrolled Inner Loop to Linear Assembly

Example 6–37 shows the linear assembly that calculates c[i] and c[i+1] for the
weighted vector sum in Example 6–36.

� The two store pointers (*ciptr and *ci+1ptr) are separated so that one
(*ciptr) increments by 2 through the odd elements of the array and the
other (*ci+1ptr) increments through the even elements.

� AND and SHR separate bi and bi+1 into two separate registers.

� This code assumes that mask is preloaded with 0x0000FFFF to clear the
upper 16 bits. The shift right of 16 places bi+1 into the 16 LSBs.

Example 6–37. Linear Assembly for Weighted Vector Sum Using LDW

LDW *aptr++,ai_i+1 ; ai & ai+1
LDW *bptr++,bi_i+1 ; bi & bi+1
MPY m,ai_i+1,pi ; m * ai
MPYHL m,ai_i+1,pi+1 ; m * ai+1
SHR pi,15,pi_scaled ; (m * ai) >> 15
SHR pi+1,15,pi+1_scaled ; (m * ai+1) >> 15
AND bi_i+1,mask,bi ; bi
SHR bi_i+1,16,bi+1 ; bi+1
ADD pi_scaled,bi,ci ; ci = (m * ai) >> 15 + bi
ADD pi+1_scaled,bi+1,ci+1 ; ci+1 = (m * ai+1) >> 15 + bi+1
STH ci,*ciptr++[2] ; store ci
STH ci+1,*ci+1ptr++[2] ; store ci+1

[cntr]SUB cntr,1,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop

6.6.3.3 Determining a New Minimum Iteration Interval

Use the following considerations to determine the minimum iteration interval
for the assembly instructions in Example 6–37:

� Four memory operations (two LDWs and two STHs) must each use a .D
unit. With two .D units available, this loop still requires only two cycles.

� Four instructions must use the .S units (three SHRs and one branch). With
two .S units available, the minimum iteration interval is still 2.

� The two MPYs do not increase the minimum iteration interval.

� Because the remaining four instructions (two ADDs, AND, and SUB) can
all use a .L unit, the minimum iteration interval for this loop is the same as
in Example 6–35.

By using LDWs instead of LDHs, the program can do twice as much work in
the same number of cycles.
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6.6.4 Drawing a Dependency Graph

To achieve a minimum iteration interval of 2, you must put an equal number
of operations per unit on each side of the dependency graph. Three operations
in one unit on a side would result in an minimum iteration interval of 3.

Figure 6–11 shows the dependency graph divided evenly with a minimum it-
eration interval of 2.

Figure 6–11. Dependency Graph of Weighted Vector Sum
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6.6.5 Linear Assembly Resource Allocation

Using the dependency graph, you can allocate functional units and registers
as shown in Example 6–38. This code is based on the following assumptions:

� The pointers are initialized outside the loop.
� m resides in B6, which causes both .M units to use a cross path.
� The mask in the AND instruction resides in B10.

Example 6–38. Linear Assembly for Weighted Vector Sum With Resources Allocated

LDW .D1 *A4++,A2 ; ai & ai+1
LDW .D2 *B4++,B2 ; bi & bi+1
MPY .M1X A2,B6,A5 ; pi = m * ai
MPYHL .M2X A2,B6,B5 ; pi+1 = m * ai+1
SHR .S1 A5,15,A7 ; pi_scaled = (m * ai) >> 15
SHR .S2 B5,15,B7 ; pi+1_scaled = (m * ai+1) >> 15
AND .L2 B2,B10,B8 ; bi
SHR .S2 B2,16,B1 ; bi+1
ADD .L1X A7,B8,A9 ; ci = (m * ai) >> 15 + bi
ADD .L2 B7,B1,B9 ; ci+1 = (m * ai+1) >> 15 + bi+1
STH .D1 A9,*A6++[2] ; store ci
STH .D2 B9,*B0++[2] ; store ci+1

  [A1] SUB .L1 A1,1,A1 ; decrement loop counter
  [A1] B .S1 LOOP ; branch to loop

6.6.6 Modulo Iteration Interval Scheduling

Table 6–12 provides a method to keep track of resources that are a modulo
iteration interval away from each other. In the single-cycle dot product exam-
ple, every instruction executed every cycle and, therefore, required only one
set of resources. Table 6–12 includes two groups of resources, which are
necessary because you are scheduling a two-cycle loop.

� Instructions that execute on cycle k also execute on cycle k + 2, k + 4, etc.
Instructions scheduled on these even cycles cannot use the same
resources.

� Instructions that execute on cycle k + 1 also execute on cycle k + 3, k + 5,
etc. Instructions scheduled on these odd cycles cannot use the same
resources.

� Because two instructions (MPY and ADD) use the 1X path but do not use
the same functional unit, Table 6–12 includes two rows (1X and 2X) that
help you keep track of the cross path resources.
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Only seven instructions have been scheduled in this table.

� The two LDWs use the .D units on the even cycles.

� The MPY and MPYH are scheduled on cycle 5 because the LDW has four
delay slots. The MPY instructions appear in two rows because they use
the .M and cross path resources on cycles 5, 7, 9, etc.

� The two SHR instructions are scheduled two cycles after the MPY to allow
for the MPY’s single delay slot.

� The AND is scheduled on cycle 5, four delay slots after the LDW.
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Table 6–12. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10

.D1
LDW ai_i+1

*
LDW ai_i+1

**
LDW ai_i+1

***
LDW ai_i+1

****
LDW ai_i+1

*****
LDW ai_i+1

.D2
LDW bi_i+1

*
LDW bi_i+1

**
LDW bi_i+1

***
LDW bi_i+1

****
LDW bi_i+1

*****
LDW bi_i+1

.M1

.M2

.L1

.L2

.S1

.S2

1X

2X

Unit/Cycle 1 3 5 7 9 11

.D1

.D2

.M1
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

.M2
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

***
MPYHL pi+1

.L1
AND bi

*
AND bi

**
AND bi

***
AND bi

.L2

.S1
SHR pi_s

*
SHR pi_s

**
SHR pi_s

.S2
SHR pi+1_s

*
SHR pi+1_s

**
SHR pi+1_s

1X
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

2X
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

***
MPYHL pi+1

Note: The asterisks indicate the iteration of the loop; shaded cells indicate cycle 0.



Modulo Scheduling of Multicycle Loops

6-65Optimizing Assembly Code via Linear Assembly

6.6.6.1 Resource Conflicts

Resources from one instruction cannot conflict with resources from any other
instruction scheduled modulo iteration intervals away. In other words, for a
2-cycle loop, instructions scheduled on cycle n cannot use the same resources
as instructions scheduled on cycles n + 2, n + 4, n + 6, etc. Table 6–13 shows
the addition of the SHR bi+1 instruction. This must avoid a conflict of resources
in cycles 5 and 7, which are one iteration interval away from each other.

Even though LDW bi_i+1 (.D2, cycle 0) finishes on cycle 5, its child, SHR bi+1,
cannot be scheduled on .S2 until cycle 6 because of a resource conflict with
SHR pi+1_scaled, which is on .S2 in cycle 7.

Figure 6–12. Dependency Graph of Weighted Vector Sum (Showing Resource Conflict)
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Table 6–13. Modulo Iteration Interval Table for Weighted Vector Sum With SHR
Instructions

ÁÁÁÁÁ
ÁÁÁÁÁ

Unit / CycleÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8 ÁÁÁÁÁ
ÁÁÁÁÁ

10, 12, 14, ...

.D1
LDW ai_i+1

*
LDW ai_i+1

**
LDW ai_i+1

***
LDW ai_i+1

****
LDW ai_i+1

*****
LDW ai_i+1

.D2
LDW bi_i+1

*
LDW bi_i+1

**
LDW bi_i+1

***
LDW bi_i+1

****
LDW bi_i+1

*****
LDW bi_i+1

.M1

.M2

.L1

.L2

.S1

.S2
SHR bi+1

*
SHR bi+1

**
SHR bi+1

1X

2X

Unit / Cycle 1 3 5 7 9 11, 13, 15, ...

.D1

.D2

.M1
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

.M2
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

***
MPYHL pi+1

.L1
AND bi

*
AND bi

**
AND bi

***
AND bi

.L2

.S1
SHR pi_s

*
SHR pi_s

**
SHR pi_s

.S2
SHR pi+1_s

*
SHR pi+1_s

**
SHR pi+1_s

1X
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

2X
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

***
MPYHL pi+1

Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 6–12.
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6.6.6.2 Live Too Long

Scheduling SHR bi+1 on cycle 6 now creates a problem with scheduling the
ADD ci instruction. The parents of ADD ci (AND bi and SHR pi_scaled) are
scheduled on cycles 5 and 7, respectively. Because the SHR pi_scaled is
scheduled on cycle 7, the earliest you can schedule ADD ci is cycle 8.

However, in cycle 7, AND bi * writes bi for the next iteration of the loop, which
creates a scheduling problem with the ADD ci instruction. If you schedule
ADD ci on cycle 8, the ADD instruction reads the parent value of bi for the next
iteration, which is incorrect. The ADD ci demonstrates a live-too-long problem.

No value can be live in a register for more than the number of cycles in the loop.
Otherwise, iteration n + 1 writes into the register before iteration n has read that
register. Therefore, in a 2-cycle loop, a value is written to a register at the end
of cycle n, then all children of that value must read the register before the end
of cycle n + 2.

6.6.6.3 Solving the Live-Too-Long Problem

The live-too-long problem in Table 6–13 means that the bi value would have
to be live from cycles 6–8, or 3 cycles. No loop variable can live longer than
the iteration interval, because a child would then read the parent value for the
next iteration.

To solve this problem move AND bi to cycle 6 so that you can schedule ADD ci
to read the correct value on cycle 8, as shown in Figure 6–13 and Table 6–14.
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Figure 6–13. Dependency Graph of Weighted Vector Sum (With Resource Conflict
Resolved)
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Table 6–14. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10

.D1
LDW ai_i+1

*
LDW ai_i+1

**
LDW ai_i+1

***
LDW ai_i+1

****
LDW ai_i+1

*****
LDW ai_i+1

.D2
LDW bi_i+1

*
LDW bi_i+1

**
LDW bi_i+1

***
LDW bi_i+1

****
LDW bi_i+1

*****
LDW bi_i+1

.M1

.M2

.L1
ADD ci

*
ADD ci

.L2
AND bi

*
AND bi

**
AND bi

.S1

.S2
SHR bi+1

*
SHR bi+1

**
SHR bi+1

1X

2X

Unit/Cycle 1 3 5 7 9 11

.D1

.D2

.M1
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

.M2
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

***
MPYHL pi+1

.L1

.L2

.S1
SHR pi_s

*
SHR pi_s

**
SHR pi_s

.S2
SHR pi+1_s

*
SHR pi+1_s

**
SHR pi+1_s

1X
MPY pi

*
MPY pi

**
MPY pi

***
MPY pi

2X
MPYHL pi+1

*
MPYHL pi+1

**
MPYHL pi+1

***
MPYHL pi+1

Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 6–13.
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6.6.6.4 Scheduling the Remaining Instructions

Figure 6–14 shows the dependency graph with additional scheduling
changes. The final version of the loop, with all instructions scheduled correctly,
is shown in Table 6–15.

Figure 6–14. Dependency Graph of Weighted Vector Sum (Scheduling ci +1)
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Table 6–15 shows the following additions:

� B LOOP (.S1, cycle 6)
� SUB cntr (.L1, cycle 5)
� ADD ci+1 (.L2, cycle 10)
� STH ci (cycle 9)
� STH ci+1 (cycle 11)

To avoid resource conflicts and live-too-long problems, Table 6–15 also
includes the following additional changes:

� LDW bi_i+1 (.D2) moved from cycle 0 to cycle 2.
� AND bi (.L2) moved from cycle 6 to cycle 7.
� SHR pi+1_scaled (.S2) moved from cycle 7 to cycle 9.
� MPYHL pi+1 moved from cycle 5 to cycle 6.
� SHR bi+1 moved from cycle 6 to 8.

From the table, you can see that this loop is pipelined six iterations deep, be-
cause iterations n and n + 5 execute in parallel.
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Table 6–15. Modulo Iteration Interval Table for Weighted Vector Sum (2-Cycle Loop)

Unit/Cycle 0 2 4 6 8 10, 12, 14, ...

.D1 LDW ai_i+1
*

LDW ai_i+1
**

LDW ai_i+1
***

LDW ai_i+1
****

LDW ai_i+1
*****

LDW ai_i+1

.D2 LDW bi_i+1
*

LDW bi_i+1
**

LDW bi_i+1
***

LDW bi_i+1
****

LDW bi_i+1

.M1

.M2 MPYHL pi+1
*

MPYHL pi+1
**

MPYHL pi+1

.L1 ADD ci
*

ADD ci

.L2 ADD  ci+1

.S1 B LOOP
*

B LOOP
**

B LOOP

.S2 SHR bi+1
*

SHR bi+1

1X ADD ci
*

ADD ci

2X MPYHL pi+1
*

MPYHL pi+1
**

MPYHL pi+1

Unit/Cycle 1 3 5 7 9 11, 13, 15, ...

.D1 STH ci
*

STH ci

.D2 STH ci+1

.M1 MPY pi
*

MPY pi
**

MPY pi
***

MPY pi

.M2

.L1 SUB cntr
*

SUB cntr
**

SUB cntr
***

SUB cntr

.L2 AND bi
*

AND bi
**

AND bi

.S1 SHR pi_s *
SHR pi_s

**
SHR pi_s

.S2 SHR pi+1_s
*

SHR pi+1_s

1X MPY pi
*

MPY pi
**

MPY pi
***

MPY pi

2X

Note: The asterisks indicate the iteration of the loop; shading indicates changes in scheduling from Table 6–14.
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6.6.7 Using the Assembly Optimizer for the Weighted Vector Sum

Example 6–39 shows the linear assembly code to perform the weighted vector
sum. You can use this code as input to the assembly optimizer to create a soft-
ware-pipelined loop instead of scheduling this by hand.

Example 6–39. Linear Assembly for Weighted Vector Sum

.global _w_vec

_w_vec: .cproc a, b, c, m

.reg ai_i1, bi_i1, pi, pi1, pi_i1, pi_s, pi1_s 

.reg mask, bi, bi1, ci, ci1, c1, cntr
 

MVK –1,mask ; set to all 1s to create 0xFFFFFFFF
MVKH 0,mask ; clear upper 16 bits to create 0xFFFF
MVK 50,cntr ; cntr = 100/2
ADD 2,c,c1 ; point to c[1]

 
LOOP: .trip 50

LDW .D1 *a++,ai_i1 ; ai & ai+1
LDW .D2 *b++,bi_i1 ; bi & bi+1
MPY .M1X ai_i1,m,pi ; m * ai
MPYHL .M2X ai_i1,m,pi1 ; m * ai+1
SHR .S1 pi,15,pi_s ; (m * ai) >> 15
SHR .S2 pi1,15,pi1_s ; (m * ai+1) >> 15
AND .L2 bi_i1,mask,bi ; bi
SHR .S2 bi_i1,16,bi1 ; bi+1
ADD .L1X pi_s,bi,ci ; ci = (m * ai) >> 15 + bi
ADD .L2 pi1_s,bi1,ci1 ; ci+1 = (m * ai+1) >> 15 + bi+1
STH .D1 ci,*c++[2] ; store ci
STH .D2 ci1,*c1++[2] ; store ci+1

[cntr] SUB .L1 cntr,1,cntr ; decrement loop counter
[cntr] B .S1 LOOP ; branch to loop

.endproc
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6.6.8 Final Assembly

Example 6–40 shows the final assembly code for the weighted vector sum.
The following optimizations are included:

� While iteration n of instruction STH ci+1 is executing, iteration n + 1 of
STH ci is executing. To prevent the STH ci instruction from executing itera-
tion 51 while STH ci + 1 executes iteration 50, execute the loop only 49
times and schedule the final executions of ADD ci+1 and STH ci+1 after
exiting the loop.

� The mask for the AND instruction is created with MVK and MVKH in paral-
lel with the loop prolog.

� The pointer to the odd elements in array c is also set up in parallel with the
loop prolog.
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Example 6–40. Assembly Code for Weighted Vector Sum

LDW .D1 *A4++,A2 ; ai & ai+1

ADD .L2X A6,2,B0 ; set pointer to ci+1

  LDW .D2 *B4++,B2 ; bi & bi+1
|| LDW .D1 *A4++,A2 ;* ai & ai+1

MVK .S2 –1,B10 ; set to all 1s (0xFFFFFFFF)

  LDW .D2 *B4++,B2 ;* bi & bi+1
|| LDW .D1 *A4++,A2 ;** ai & ai+1
|| MVK .S1 49,A1 ; set up loop counter
|| MVKH .S2 0,B10 ; clr upper 16 bits (0x0000FFFF)
 
 MPY .M1X A2,B6,A5 ; m * ai
||[A1] SUB .L1 A1,1,A1 ; decrement loop counter
 

MPYHL .M2X A2,B6,B5 ; m * ai+1
||[A1] B .S1 LOOP ; branch to loop
|| LDW .D2 *B4++,B2 ;** bi & bi+1
|| LDW .D1 *A4++,A2 ;*** ai & ai+1
 
 SHR .S1 A5,15,A7 ; (m * ai) >> 15
|| AND .L2 B2,B10,B8 ; bi
|| MPY .M1X A2,B6,A5 ;* m * ai
||[A1] SUB .L1 A1,1,A1 ;* decrement loop counter
 
 SHR .S2 B2,16,B1 ; bi+1
|| ADD .L1X A7,B8,A9 ; ci = (m * ai) >> 15 + bi
|| MPYHL .M2X A2,B6,B5 ;* m * ai+1
||[A1] B .S1 LOOP ;* branch to loop
|| LDW .D2 *B4++,B2 ;*** bi & bi+1
|| LDW .D1 *A4++,A2 ;**** ai & ai+1
 
 SHR .S2 B5,15,B7 ; (m * ai+1) >> 15
|| STH .D1 A9,*A6++[2] ; store ci
|| SHR .S1 A5,15,A7 ;* (m * ai) >> 15
|| AND .L2 B2,B10,B8 ;* bi
||[A1] SUB .L1 A1,1,A1 ;** decrement loop counter
|| MPY .M1X A2,B6,A5 ;** m * ai

LOOP:
  ADD .L2 B7,B1,B9 ; ci+1 = (m * ai+1) >> 15 + bi+1
|| SHR .S2 B2,16,B1 ;* bi+1
|| ADD .L1X A7,B8,A9 ;* ci = (m * ai) >> 15 + bi
|| MPYHL .M2X A2,B6,B5 ;** m * ai+1
||[A1] B .S1 LOOP ;** branch to loop
|| LDW .D2 *B4++,B2 ;**** bi & bi+1
|| LDW .D1 *A4++,A2 ;***** ai & ai+1
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Example 6–40. Assembly Code for Weighted Vector Sum (Continued)

  STH .D2 B9,*B0++[2] ; store ci+1
|| SHR .S2 B5,15,B7 ;* (m * ai+1) >> 15
|| STH .D1 A9,*A6++[2] ;* store ci
|| SHR .S1 A5,15,A7 ;** (m * ai) >> 15
|| AND .L2 B2,B10,B8 ;** bi
||[A1] SUB .L1 A1,1,A1 ;*** decrement loop counter
|| MPY .M1X A2,B6,A5 ;*** m * ai

; Branch occurs here
 

ADD .L2 B7,B1,B9 ; ci+1 = (m * ai+1) >> 15 + bi+1
 
 STH .D2 B9,*B0 ; store ci+1
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6.7 Loop Carry Paths

Loop carry paths occur when one iteration of a loop writes a value that must
be read by a future iteration. A loop carry path can affect the performance of
a software-pipelined loop that executes multiple iterations in parallel. Some-
times loop carry paths (instead of resources) determine the minimum iteration
interval.

IIR filter code contains a loop carry path; output samples are used as input to
the computation of the next output sample.

6.7.1 IIR Filter C Code

Example 6–41 shows C code for a simple IIR filter. In this example, y[i] is an
input to the calculation of y[i+1]. Before y[i] can be read for the next iteration,
y[i+1] must be computed from the previous iteration.

Example 6–41. IIR Filter C Code

void iir(short x[],short y[],short c1, short c2, short c3)
{

int i;

for (i=0; i<100; i++) {
y[i+1] = (c1*x[i] + c2*x[i+1] + c3*y[i]) >> 15;
}

}
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6.7.2 Translating C Code to Linear Assembly (Inner Loop)

Example 6–42 shows the ’C6000 instructions that execute the inner loop of the
IIR filter C code. In this example:

� xptr is not postincremented after loading xi+1, because xi of the next
iteration is actually xi+1 of the current iteration. Thus, the pointer points to
the same address when loading both xi+1 for one iteration and xi for the
next iteration.

� yptr is also not postincremented after storing yi+1, because yi of the next
iteration is yi+1 for the current iteration.

Example 6–42. Linear Assembly for IIR Inner Loop

LDH *xptr++,xi ; xi+1
MPY c1,xi,p0 ; c1 * xi
LDH *xptr,xi+1 ; xi+1
MPY c2,xi+1,p1 ; c2 * xi+1
ADD p0,p1,s0 ; c1 * xi + c2 * xi+1
LDH *yptr++,yi ; yi
MPY c3,yi,p2 ; c3 * yi
ADD s0,p2,s1 ; c1 * xi + c2 * xi+1 + c3 * yi
SHR s1,15,yi+1 ; yi+1
STH yi+1,*yptr ; store yi+1

[cntr]SUB cntr,1,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop
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6.7.3 Drawing a Dependency Graph

Figure 6–15 shows the dependency graph for the IIR filter. A loop carry path
exists from the store of yi+1 to the load of yi. The path between the STH and
the LDH is one cycle because the load and store instructions use the same
memory pipeline. Therefore, if a store is issued to a particular address on cycle
n and a load from that same address is issued on the next cycle, the load reads
the value that was written by the store instruction.

Figure 6–15. Dependency Graph of IIR Filter

LDH

ADD

SUB

cntr

LOOP

1
B

1

SHR

yi+1

mem

STH

s1

s0

MPY

xi

5

p0

2

LDH

MPY

xi+1

5

p1

2

ADD

LDH

MPY

yi

p2

1

A side B side

5

2

1

1

1

Note: The shaded numbers show the loop carry path: 5 + 2 + 1 + 1 + 1 = 10.



Loop Carry Paths

 6-80

6.7.4 Determining the Minimum Iteration Interval

To determine the minimum iteration interval, you must consider both resources
and data dependency constraints. Based on resources in Table 6–16, the
minimum iteration interval is 2.

Note:

There are six non-.M units available: three on the A side (.S1, .D1, .L1) and
three on the B side (.S2, .D2, .L2). Therefore, to determine resource
constraints, divide the total number of non-.M units used on each side by 3
(3 is the total number of non-.M units available on each side).

Based on non-.M unit resources in Table 6–16, the minimum iteration inter-
val for the IIR filter is 2 because the total non-.M units on the A side is 5 (5 � 3
is greater than 1 so you round up to the next whole number). The B side uses
only three non-.M units, so this does not affect the minimum iteration interval,
and no other unit is used more than twice.

Table 6–16. Resource Table for IIR Filter

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 2 MPYs 2 .M2 MPY 1

.S1 B 1 .S2 SHR 1

.D1 2 LDHs 2 .D2 STH 1

.L1,.S1, or .D1 ADD & SUB 2 .L2 or .S2, .D2 ADD 1

Total non-.M units 5 Total non-.M units 3

However, the IIR has a data dependency constraint defined by its loop carry
path. Figure 6–15 shows that if you schedule LDH yi on cycle 0:

� The earliest you can schedule MPY p2 is on cycle 5.

� The earliest you can schedule ADD s1 is on cycle 7.

� SHR yi+1 must be on cycle 8 and STH on cycle 9.

� Because the LDH must wait for the STH to be issued, the earliest the the
second iteration can begin is cycle 10.

To determine the minimum loop carry path, add all of the numbers along the
loop paths in the dependency graph. This means that this loop carry path is
10 (5 + 2 + 1 + 1 + 1).
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Although the minimum iteration interval is the greater of the resource limits and
data dependency constraints, an interval of 10 seems slow. Figure 6–16
shows how to improve the performance.

6.7.4.1 Drawing a New Dependency Graph

Figure 6–16 shows a new graph with a loop carry path of 4 (2 +1 + 1). because
the MPY p2 instruction can read yi+1 while it is still in a register, you can reduce
the loop carry path by six cycles. LDH yi is no longer in the graph. Instead, you
can issue LDH y[0] once outside the loop. In every iteration after that, the y+1
values written by the SHR instruction are valid y inputs to the MPY instruction.

Figure 6–16. Dependency Graph of IIR Filter (With Smaller Loop Carry)
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6.7.4.2 New ’C6x Instructions (Inner Loop)

Example 6–43 shows the new linear assembly from the graph in Figure 6–16,
where LDH yi was removed. The one variable y that is read and written is yi
for the MPY p2 instruction and yi+1 for the SHR and STH instructions.

Example 6–43. Linear Assembly for IIR Inner Loop With Reduced Loop Carry Path

LDH *xptr++,xi ; xi+1
MPY c1,xi,p0 ; c1 * xi
LDH *xptr,xi+1 ; xi+1
MPY c2,xi+1,p1 ; c2 * xi+1
ADD p0,p1,s0 ; c1 * xi + c2 * xi+1
MPY c3,y,p2 ; c3 * yi
ADD s0,p2,s1 ; c1 * xi + c2 * xi+1 + c3 * yi
SHR s1,15,y ; yi+1
STH y,*yptr++ ; store yi+1

[cntr]SUB cntr,1,cntr ; decrement loop counter
[cntr]B LOOP ; branch to loop

6.7.5 Linear Assembly Resource Allocation

Example 6–44 shows the same linear assembly instructions as those in
Example 6–43  with the functional units and registers assigned.

Example 6–44. Linear Assembly for IIR Inner Loop (With Allocated Resources)

LDH .D1 *A4++,A2 ; xi+1
MPY .M1 A6,A2,A5 ; c1 * xi
LDH .D1 *A4,A3 ; xi+1
MPY .M1X B6,A3,A7 ; c2 * xi+1
ADD .L1 A5,A7,A9 ; c1 * xi + c2 * xi+1
MPY .M2X A8,B2,B3 ; c3 * yi
ADD .L2X B3,A9,B5 ; c1 * xi + c2 * xi+1 + c3 * yi
SHR .S2 B5,15,B2 ; yi+1
STH .D2 B2,*B4++ ; store yi+1

  [A1] SUB .L1 A1,1,A1 ; decrement loop counter
  [A1] B .S1 LOOP ; branch to loop
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6.7.6 Modulo Iteration Interval Scheduling

Table 6–17 shows the modulo iteration interval table for the IIR filter. The SHR
instruction on cycle 10 finishes in time for the MPY p2 instruction from the next
iteration to read its result on cycle 11.

Table 6–17. Modulo Iteration Interval Table for IIR (4-Cycle Loop)
ÁÁÁÁ
ÁÁÁÁ

Unit/Cycle
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
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4
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ÁÁÁÁÁ
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ÁÁÁÁÁ

.S1
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
.S2
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.S2
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
1X
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

1X
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
2X
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

2X
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ADD s1
ÁÁÁÁ
ÁÁÁÁ

Unit/Cycle
ÁÁÁÁÁ
ÁÁÁÁÁ

2
ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁÁ
ÁÁÁÁÁ

10, 14, 18, ...
ÁÁÁÁÁ
ÁÁÁÁÁ

Unit/Cycle
ÁÁÁÁ
ÁÁÁÁ

3
ÁÁÁÁÁ
ÁÁÁÁÁ

7
ÁÁÁÁÁ
ÁÁÁÁÁ

11, 15, 19, ...
ÁÁÁÁ
ÁÁÁÁ

.D1
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.D1
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
.D2
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.D2
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

STH yi+1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

.M1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

MPY p1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

*
MPY p1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

.M1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
.M2 ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

.M2 ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁMPY p2

*
MPY p2ÁÁÁÁ

ÁÁÁÁ.L1
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ.L1

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ.L2
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ.L2

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

.S1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

B LOOP

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

*
B LOOP

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

.S1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

.S2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

SHR yi+1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

.S2
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
1X ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

MPY p1
ÁÁÁÁÁ
ÁÁÁÁÁ

*
MPY p1

ÁÁÁÁÁ
ÁÁÁÁÁ

1X ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

2X
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2X
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

MPY p2

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

*
MPY p2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Note: The asterisks indicate the iteration of the loop.
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6.7.7 Using the Assembly Optimizer for the IIR Filter

Example 6–45 shows the linear assembly code to perform the IIR filter. Once
again, you can use this code as input to the assembly optimizer to create a soft-
ware-pipelined loop instead of scheduling this by hand.

Example 6–45. Linear Assembly for IIR Filter

.global _iir

_iir: .cproc  x, y, c1, c2, c3

.reg xi, xi1, yi1

.reg p0, p1, p2, s0, s1, cntr
 

MVK 100,cntr ; cntr = 100

LDH .D2 *y++,yi1 ; yi+1

LOOP: .trip 100
LDH .D1 *x++,xi ; xi
MPY .M1 c1,xi,p0 ; c1 * xi
LDH .D1 *x,xi1 ; xi+1
MPY .M1X c2,xi1,p1 ; c2 * xi+1
ADD .L1 p0,p1,s0 ; c1 * xi + c2 * xi+1
MPY .M2X c3,yi1,p2 ; c3 * yi
ADD .L2X s0,p2,s1 ; c1 * xi + c2 * xi+1 + c3 * yi
SHR .S2 s1,15,yi1 ; yi+1
STH .D2 yi1,*y++ ; store yi+1

[cntr] SUB .L1 cntr,1,cntr ; decrement loop counter
[cntr] B .S1 LOOP ; branch to loop

.endproc
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6.7.8 Final Assembly

Example 6–46 shows the final assembly for the IIR filter. With one load of y[0]
outside the loop, no other loads from the y array are needed. Example 6–46
requires 408 cycles: (4�100) + 8.

Example 6–46. Assembly Code for IIR Filter

LDH .D1 *A4++,A2 ; xi
 
 LDH .D1 *A4,A3 ; xi+1

LDH .D2 *B4++,B2 ; load y[0] outside of loop

MVK .S1 100,A1 ; set up loop counter

  LDH .D1 *A4++,A2 ;* xi

  [A1] SUB .L1 A1,1,A1 ; decrement loop counter
||  MPY .M1 A6,A2,A5 ; c1 * xi
|| LDH .D1 *A4,A3 ;* xi+1

  MPY .M1X B6,A3,A7 ; c2 * xi+1
||[A1] B .S1 LOOP ; branch to loop

  MPY .M2X A8,B2,B3 ; c3 * yi

LOOP:
  ADD .L1 A5,A7,A9 ; c1 * xi + c2 * xi+1
||  LDH .D1 *A4++,A2 ;** xi

ADD .L2X B3,A9,B5 ; c1 * xi + c2 * xi+1 + c3 * yi
||[A1] SUB .L1 A1,1,A1 ;* decrement loop counter
|| MPY .M1 A6,A2,A5 ;* c1 * xi
|| LDH .D1 *A4,A3 ;** xi+1

  SHR .S2 B5,15,B2 ; yi+1
|| MPY .M1X B6,A3,A7 ;* c2 * xi+1
||[A1] B .S1 LOOP ;* branch to loop

  STH .D2 B2,*B4++ ; store yi+1
|| MPY .M2X A8,B2,B3 ;* c3 * yi

; Branch occurs here
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6.8 If-Then-Else Statements in a Loop

If-then-else statements in C cause certain instructions to execute when the if
condition is true and other instructions to execute when it is false. One way to
accomplish this in linear assembly code is with conditional instructions. Be-
cause all ’C6000 instructions can be conditional on one of five general-pur-
pose registers on the ’C62x and ’C67x and one of 6 on the ’C64x. Conditional
instructions can handle both the true and false cases of the if-then-else C
statement.

6.8.1 If-Then-Else C Code

Example 6–47 contains a loop with an if-then-else statement. You either add
a[i] to sum or subtract a[i] from sum.

Example 6–47. If-Then-Else C Code

int if_then(short a[], int codeword, int mask, short theta)
{

int i,sum, cond;

sum = 0;
for (i = 0; i < 32; i++){

cond = codeword & mask;
if (theta  ==  !(!(cond)))
    sum += a[i];
else
    sum –= a[i];
mask = mask << 1;
}

return(sum);
}

Branching is one way to execute the if-then-else statement: branch to the ADD
when the if statement is true and branch to the SUB when the if statement is
false. However, because each branch has five delay slots, this method
requires additional cycles. Furthermore, branching within the loop makes soft-
ware pipelining almost impossible.

Using conditional instructions, on the other hand, eliminates the need to
branch to the appropriate piece of code after checking whether the condition
is true or false. Simply program both the ADD and SUB as usual, but make
them conditional on the zero and nonzero values of a condition register. This
method also allows you to software pipeline the loop and achieve much better
performance than you would with branching.



If-Then-Else Statements in a Loop

6-87Optimizing Assembly Code via Linear Assembly

6.8.2 Translating C Code to Linear Assembly

Example 6–48 shows the linear assembly instructions needed to execute in-
ner loop of the C code in Example 6–47.

Example 6–48. Linear Assembly for If-Then-Else Inner Loop

AND codeword,mask,cond ; cond = codeword & mask
[cond]MVK 1,cond ; !(!(cond))

CMPEQ theta,cond,if ; (theta == !(!(cond)))
LDH *aptr++,ai ; a[i]

 [if] ADD sum,ai,sum ; sum += a[i]
 [!if] SUB sum,ai,sum ; sum –= a[i]

SHL mask,1,mask ; mask = mask << 1;

[cntr]ADD –1,cntr,cntr ; decrement counter
[cntr]B LOOP ; for LOOP

CMPEQ is used to create IF. The ADD is conditional when IF is nonzero (corre-
sponds to then); the SUB is conditional when IF is 0 (corresponds to else).

A conditional MVK performs the !(!(cond)) C statement. If the result of the
bitwise AND is nonzero, a 1 is written into cond; if the result of the AND is 0,
cond remains at 0.

Optimizing Assembly Code via Linear Assembly
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6.8.3 Drawing a Dependency Graph

Figure 6–17 shows the dependency graph for the if-then-else C code. This
graph illustrates the following arrangement:

� Two nodes on the graph contain sum: one for the ADD and one for the
SUB. Because some iterations are performing an ADD and others are
performing a SUB, each of these nodes is a possible input to the next itera-
tion of either node.

� The LDH ai instruction is a parent of both ADD sum and SUB sum, be-
cause both instructions read ai.

� CMPEQ if is also a parent to ADD sum and SUB sum, because both read
IF for the conditional execution.

� The result of SHL mask is read on the next iteration by the AND cond
instruction.

Figure 6–17. Dependency Graph of If-Then-Else Code
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6.8.4 Determining the Minimum Iteration Interval

With nine instructions, the minimum iteration interval is at least 2, because a
maximum of eight instructions can be in parallel. Based on the way the depen-
dency graph in Figure 6–17 is split, five instructions are on the A side and four
are on the B side. Because none of the instructions are MPYs, all instructions
must go on the .S, .D, or .L units, which means you have a total of six
resources.

� LDH must be on a .D unit.
� SHL, B, and MVK must be on a .S unit.
� The ADDs and SUB can be on the .S, .L, or .D units.
� The AND can be on a .S or .L unit, or .D unit (’C64x only)

From Table 6–18, you can see that no one resource is used more than two
times, so the minimum iteration interval is still 2.

Table 6–18. Resource Table for If-Then-Else Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 0 .M2 0

.S1 SHL & B 2 .S2 MVK 1

.D1 LDH 1 .L2 CMPEQ 1

.L1, .S1, or .D1 ADD & SUB 2 .L2 or .S2 AND 1

.L2, .S2, or .D2 ADD 1

Total non-.M units 5 Total non-.M units 4

The minimum iteration interval is also affected by the total number of instruc-
tions. Because three units can perform nonmultiply operations on a given side,
a total of five instructions can be performed with a minimum iteration interval
of 2. Because only four instructions are on the B side, the minimum iteration
interval is still 2.
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6.8.5 Linear Assembly Resource Allocation

Now that the graph is split and you know the minimum iteration interval, you
can allocate functional units and registers to the instructions. You must ensure
that no resource is used more than twice.

Example 6–49 shows the linear assembly with the functional units and regis-
ters that are used in the inner loop.

Example 6–49. Linear Assembly for Full If-Then-Else Code

.global _if_then

_if_then: .cproc a, cword, mask, theta

.reg cond, if, ai, sum, cntr
 

MVK 32,cntr ; cntr = 32
ZERO sum ; sum = 0

LOOP: .trip 32
AND .S2X cword,mask,cond ; cond = codeword & mask

 [cond] MVK .S2 1,cond ; !(!(cond))
CMPEQ .L2 theta,cond,if ; (theta == !(!(cond)))
LDH .D1 *a++,ai ; a[i]

   [if] ADD .L1 sum,ai,sum ; sum += a[i]
  [!if] SUB .D1 sum,ai,sum ; sum –= a[i]

SHL .S1 mask,1,mask ; mask = mask << 1;
 [cntr] ADD .L2 –1,cntr,cntr ; decrement counter
 [cntr] B .S1 LOOP ; for LOOP

.return sum

.endproc
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6.8.6 Final Assembly

Example 6–50 shows the final assembly code after software pipelining. The
performance of this loop is 70 cycles (2 � 32 + 6).

Example 6–50. Assembly Code for If-Then-Else

MVK .S2 32,B0 ; set up loop counter

  [B0] ADD .L2 –1,B0,B0 ; decrement counter

  [B0] ADD .L2 –1,B0,B0 ; decrement counter
||[B0] B .S1 LOOP ; for LOOP
|| LDH .D1 *A4++,A5 ; a[i]

  SHL .S1 A6,1,A6 ; mask = mask << 1;
|| AND .S2X B4,A6,B2 ; cond = codeword & mask

  [B2] MVK .S2 1,B2 ; !(!(cond))
||[B0] ADD .L2 –1,B0,B0 ; decrement counter
||[B0] B .S1 LOOP ;* for LOOP
|| LDH .D1 *A4++,A5 ;* a[i]

  CMPEQ .L2 B6,B2,B1 ; (theta == !(!(cond)))
|| SHL .S1 A6,1,A6 ;* mask = mask << 1;
|| AND .S2X B4,A6,B2 ;* cond = codeword & mask
|| ZERO .L1 A7 ; zero out accumulator

LOOP:
  [B0] ADD .L2 –1,B0,B0 ; decrement counter
||[B2] MVK .S2 1,B2 ;* !(!(cond))
||[B0] B .S1 LOOP ;** for LOOP
|| LDH .D1 *A4++,A5 ;** a[i]

  [B1] ADD .L1 A7,A5,A7 ; sum += a[i]
||[!B1]SUB .D1 A7,A5,A7 ; sum –= a[i]
|| CMPEQ .L2 B6,B2,B1 ;* (theta == !(!(cond)))
|| SHL .S1 A6,1,A6 ;** mask = mask << 1;
|| AND .S2X B4,A6,B2 ;** cond = codeword & mask

; Branch occurs here
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6.8.7 Comparing Performance

You can improve the performance of the code in Example 6–50 if you know
that the loop count is at least 3. If the loop count is at least 3, remove the decre-
ment counter instructions outside the loop and put the MVK (for setting up the
loop counter) in parallel with the first branch. These two changes save two
cycles at the beginning of the loop prolog.

The first two branches are now unconditional, because the loop count is at
least 3 and you know that the first two branches must execute. To account for
the removal of the three decrement-loop-counter instructions, set the loop
counter to 3 fewer than the actual number of times you want the loop to
execute: in this case, 29 (32 – 3).

Example 6–51. Assembly Code for If-Then-Else With Loop Count Greater Than 3

 B .S1 LOOP ; for LOOP
|| LDH .D1 *A4++,A5 ; a[i]
|| MVK .S2 29,B0 ; set up loop counter

  SHL .S1 A6,1,A6 ; mask = mask << 1;
|| AND .S2X B4,A6,B2 ; cond = codeword & mask

  [B2] MVK .S2 1,B2 ; !(!(cond))
|| B .S1 LOOP ;* for LOOP
|| LDH .D1 *A4++,A5 ;* a[i]

  CMPEQ .L2 B6,B2,B1 ; (theta == !(!(cond)))
|| SHL .S1 A6,1,A6 ;* mask = mask << 1;
|| AND .S2X B4,A6,B2 ;* cond = codeword & mask
|| ZERO .L1 A7 ; zero out accumulator

LOOP:
  [B0] ADD .L2 –1,B0,B0 ; decrement counter
||[B2] MVK .S2 1,B2 ;* !(!(cond))
||[B0] B .S1 LOOP ;** for LOOP
|| LDH .D1 *A4++,A5 ;** a[i]

  [B1] ADD .L1 A7,A5,A7 ; sum += a[i]
||[!B1]SUB .D1 A7,A5,A7 ; sum –= a[i]
|| CMPEQ .L2 B6,B2,B1 ;* (theta == !(!(cond)))
|| SHL .S1 A6,1,A6 ;** mask = mask << 1;
|| AND .S2X B4,A6,B2 ;** cond = codeword & mask

; Branch occurs here

Example 6–51 shows the improved loop with a cycle count of 68 (2 � 32 + 4).
Table 6–19 compares the performance of Example 6–50 and Example 6–51.
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Table 6–19. Comparison of If-Then-Else Code Examples

Code Example Cycles Cycle Count

Example 6–50 If-then-else assembly code (2 � 32) + 6 70

Example 6–51 If-then-else assembly code with loop count greater than 3 (2 � 32) + 4 68
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6.9 Loop Unrolling

Even though the performance of the previous example is good, it can be im-
proved. When resources are not fully used, you can improve performance by
unrolling the loop. In Example 6–52, only nine instructions execute every two
cycles. If you unroll the loop and analyze the new minimum iteration interval,
you have room to add instructions. A minimum iteration interval of 3 provides
a 25% improvement in throughput: three cycles to do two iterations, rather
than the four cycles required in Example 6–51.

6.9.1 Unrolled If-Then-Else C Code

Example 6–52 shows the unrolled version of the if-then-else C code in
Example 6–47 on page 6-86.

Example 6–52. If-Then-Else C Code (Unrolled)

int unrolled_if_then(short a[], int codeword, int mask, short theta)
{

int i,sum, cond;

sum = 0;
for (i = 0; i < 32; i+=2){

cond = codeword & mask;
if (theta  ==  !(!(cond)))
    sum += a[i];
else
    sum –= a[i];
mask = mask << 1;

cond = codeword & mask;
if (theta  ==  !(!(cond)))
    sum += a[i+1];
else
    sum –= a[i+1];
mask = mask << 1;
}

return(sum);
}
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6.9.2 Translating C Code to Linear Assembly

Example 6–53 shows the unrolled inner loop with 16 instructions and the
possibility of achieving a loop with a minimum iteration interval of 3.

Example 6–53. Linear Assembly for Unrolled If-Then-Else Inner Loop

AND codeword,maski,condi ; condi = codeword & maski
[condi] MVK 1,condi ; !(!(condi))

CMPEQ theta,condi,ifi ; (theta == !(!(condi)))
LDH *aptr++,ai ; a[i]

[ifi] ADD sumi,ai,sumi ; sum += a[i]
[!ifi] SUB sumi,ai,sumi ; sum –= a[i]

SHL maski,1,maski+1 ; maski+1 = maski << 1;

AND codeword,maski+1,condi+1 ; condi+1 = codeword & maski+1
[condi+1]MVK 1,condi+1 ; !(!(condi+1))

CMPEQ theta,condi+1,ifi+1 ; (theta == !(!(condi+1)))
LDH *aptr++,ai+1 ; a[i+!]

 [ifi+1] ADD sumi+1,ai+1,sumi+1 ; sum += a[i+1]
[!ifi+1] SUB sumi+1,ai+1,sumi+1 ; sum –= a[i+1]

SHL maski+1,1,maski ; maski = maski+1 << 1;

 [cntr] ADD –1,cntr,cntr ; decrement counter
 [cntr] B LOOP ; for LOOP
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6.9.3 Drawing a Dependency Graph

Although there are numerous ways to split the dependency graph, the main
goal is to achieve a minimum iteration interval of 3 and meet these conditions:

� You cannot have more than nine non-.M instructions on either side.
� Only three non-.M instructions can execute per cycle.

Figure 6–18 shows the dependency graph for the unrolled if-then-else code.
Nine instructions are on the A side, and seven instructions are on the B side.

Figure 6–18. Dependency Graph of If-Then-Else Code (Unrolled)
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6.9.4 Determining the Minimum Iteration Interval

With 16 instructions, the minimum iteration interval is at least 3 because a
maximum of six instructions can be in parallel with the following allocation
possibilities:

� LDH must be on a .D unit.
� SHL, B, and MVK must be on a .S unit.
� The ADDs and SUB can be on a .S, .L, or .D unit.
� The AND can be on a .S or .L unit, or .D unit (’C64x only)

From Table 6–20, you can see that no one resource is used more than three
times so that the minimum iteration interval is still 3.

Checking the total number of non-.M instructions on each side shows that a
total of nine instructions can be performed with the minimum iteration interval
of 3. because only seven non-.M instructions are on the B side, the minimum
iteration interval is still 3.

Table 6–20. Resource Table for Unrolled If-Then-Else Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 0 .M2 0

.S1 MVK and 2 SHLs 3 .S2 MVK and B 2

.D1 2 LDHs 2 .L2 CMPEQ 1

.L1 CMPEQ 1 .L2 pr.S2 AND 1

.L1 or .S1 AND 1 .L2 ,.S2, or .D2 SUB and 2 ADDs 3

.L1, .S1, or .D1 ADD and SUB 2

Total non-.M units 9 Total non-.M units 7

6.9.5 Linear Assembly Resource Allocation

Now that the graph is split and you know the minimum iteration interval, you
can allocate functional units and registers to the instructions. You must ensure
no resource is used more than three times.

Example 6–54 shows the linear assembly code with the functional units and
registers.
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Example 6–54. Linear Assembly for Full Unrolled If-Then-Else Code

.global _unrolled_if_then

_unrolled_if_then:  .cproc   a, cword, mask, theta

.reg cword, mask, theta, ifi, ifi1, a, ai, ai1, cntr

.reg cdi, cdi1, sumi, sumi1, sum
 

MV A4,a ; C callable register for 1st operand
MV B4,cword ; C callable register for 2nd operand
MV A6,mask ; C callable register for 3rd operand
MV B6,theta ; C callable register for 4th operand
MVK 16,cntr ; cntr = 32/2
ZERO sumi ; sumi = 0
ZERO sumi1 ; sumi+1 = 0

LOOP: .trip 32
AND .L1X cword,mask,cdi ; cdi = codeword & maski

  [cdi] MVK .S1 1,cdi ; !(!(cdi))
CMPEQ .L1X theta,cdi,ifi ; (theta == !(!(cdi)))
LDH .D1 *a++,ai ; a[i]

  [ifi] ADD .L1 sumi,ai,sumi ; sum += a[i]
 [!ifi] SUB .D1 sumi,ai,sumi ; sum –= a[i]

SHL .S1 mask,1,mask ; maski+1 = maski << 1;

AND .L2X cword,mask,cdi1 ; cdi+1 = codeword & maski+1
 [cdi1] MVK .S2 1,cdi1 ; !(!(cdi+1))

CMPEQ .L2 theta,cdi1,ifi1 ; (theta == !(!(cdi+1)))
LDH .D1 *a++,ai1 ; a[i+1]

 [ifi1] ADD .L2 sumi1,ai1,sumi1 ; sum += a[i+1]
[!ifi1] SUB .D2 sumi1,ai1,sumi1 ; sum –= a[i+1]

SHL .S1 mask,1,mask ; maski = maski+1 << 1;

 [cntr] ADD .D2 –1,cntr,cntr ; decrement counter
 [cntr] B .S2 LOOP ; for LOOP

ADD sumi,sumi1,sum ; Add sumi and sumi+1 for ret value

.return sum

.endproc
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6.9.6 Final Assembly

Example 6–55 shows the final assembly code after software pipelining. The
cycle count of this loop is now 53: (3�16) + 5.

Example 6–55. Assembly Code for Unrolled If-Then-Else 

MVK .S2 16,B0 ; set up loop counter
 

LDH .D1 *A4++,A5 ; a[i]
||[B0] ADD .D2 –1,B0,B0 ; decrement counter

  LDH .D1 *A4++,B5 ; a[i+1]
||[B0] B .S2 LOOP ; for LOOP
||[B0] ADD .D2 –1,B0,B0 ; decrement counter
|| SHL .S1 A6,1,A6 ; maski+1 = maski << 1;
|| AND .L1X B4,A6,A2 ; condi = codeword & maski

  [A2] MVK .S1 1,A2 ; !(!(condi))
|| AND .L2X B4,A6,B2 ; condi+1 = codeword & maski+1
|| ZERO .L1 A7 ; zero accumulator

  [B2] MVK .S2 1,B2 ; !(!(condi+1))
|| CMPEQ .L1X B6,A2,A1 ; (theta == !(!(condi)))
|| SHL .S1 A6,1,A6 ; maski = maski+1 << 1;
|| LDH .D1 *A4++,A5 ;* a[i]
|| ZERO .L2 B7 ; zero accumulator

LOOP:
  CMPEQ .L2 B6,B2,B1 ; (theta == !(!(condi+1)))
||[B0] ADD .D2 –1,B0,B0 ; decrement counter
|| LDH .D1 *A4++,B5 ;* a[i+1]
||[B0] B .S2 LOOP ;* for LOOP
|| SHL .S1 A6,1,A6 ;* maski+1 = maski << 1;
|| AND .L1X B4,A6,A2 ;* condi = codeword & maski

  [A1] ADD .L1 A7,A5,A7 ; sum += a[i]
||[!A1]SUB .D1 A7,A5,A7 ; sum –= a[i]
||[A2] MVK .S1 1,A2 ;* !(!(condi))
|| AND .L2X B4,A6,B2 ;* condi+1 = codeword & maski+1

  [B1] ADD .L2 B7,B5,B7 ; sum += a[i+1]
||[!B1]SUB .D2 B7,B5,B7 ; sum –= a[i+1]
||[B2] MVK .S2 1,B2 ;* !(!(condi+1))
|| CMPEQ .L1X B6,A2,A1 ;* (theta == !(!(condi)))
|| SHL .S1 A6,1,A6 ;* maski = maski+1 << 1;
|| LDH .D1 *A4++,A5 ;** a[i]

; Branch occurs here

ADD .L1X A7,B7,A4 ; move to return register
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6.9.7 Comparing Performance

Table 6–21 compares the performance of all versions of the if-then-else code
examples.

Table 6–21. Comparison of If-Then-Else Code Examples

Code Example Cycles Cycle Count

Example 6–50 If-then-else assembly code (2 � 32) + 6 70

Example 6–51 If-then-else assembly code with loop count greater than 3 (2 � 32) + 4 68

Example 6–55 Unrolled if-then-else assembly code (3 � 16) + 5 53
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6.10 Live-Too-Long Issues

When the result of a parent instruction is live longer than the minimum iteration
interval of a loop, you have a live-too-long problem. Because each instruction
executes every iteration interval cycle, the next iteration of that parent over-
writes the register with a new value before the child can read it. Section 6.6.6.1,
Resource Conflicts, on page 6-65 showed how to solve this problem simply
by moving the parent to a later cycle. This is not always a valid solution.

6.10.1 C Code With Live-Too-Long Problem

Example 6–56 shows C code with a live-too-long problem that cannot be
solved by rescheduling the parent instruction. Although it is not obvious from
the C code, the dependency graph in Figure 6–19 on page 6-103 shows a split-
join path that causes this live-too-long problem.

Example 6–56. Live-Too-Long C Code

int live_long(short a[],short b[],short c, short d, short e)
{

int i,sum0,sum1,sum,a0,a2,a3,b0,b2,b3;
short a1,b1;

sum0 = 0;
sum1 = 0;
for(i=0; i<100; i++){

a0 = a[i] * c;
a1 = a0 >> 15;
a2 = a1 * d;
a3 = a2 + a0;
sum0 += a3;
b0 = b[i] * c;
b1 = b0 >> 15;
b2 = b1 * e;
b3 = b2 + b0;
sum1 += b3;
}

sum = sum0 + sum1;
return(sum);

}
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6.10.2 Translating C Code to Linear Assembly

Example 6–57 shows the assembly instructions that execute the inner loop in
Example 6–56.

Example 6–57. Linear Assembly for Live-Too-Long Inner Loop

LDH *aptr++,ai ; load ai from memory
LDH *bptr++,bi ; load bi from memory
MPY ai,c,a0 ; a0 = ai * c
SHR a0,15,a1 ; a1 = a0 >> 15
MPY a1,d,a2 ; a2 = a1 * d
ADD a2,a0,a3 ; a3 = a2 + a0
ADD sum0,a3,sum0 ; sum0 += a3
MPY bi,c,b0 ; b0 = bi * c
SHR b0,15,b1 ; b1 = b0 >> 15
MPY b1,e,b2 ; b2 = b1 * e
ADD b2,b0,b3 ; b3 = b2 + b0
ADD sum1,b3,sum1 ; sum1 += b3

  [cntr]SUB cntr,1,cntr ; decrement loop counter
  [cntr]B LOOP ; branch to loop

6.10.3 Drawing a Dependency Graph

Figure 6–19 shows the dependency graph for the live-too-long code. This
algorithm includes three separate and independent graphs. Two of the inde-
pendent graphs have split-join paths: from a0 to a3 and from b0 to b3.
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Figure 6–19. Dependency Graph of Live-Too-Long Code
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6.10.4 Determining the Minimum Iteration Interval

Table 6–22 shows the functional unit resources for the loop. Based on the re-
source usage, the minimum iteration interval is 2 for the following reasons:

� No specific resource is used more than twice, implying a minimum itera-
tion interval of 2.

� A total of five non-.M units on each side also implies a minimum iteration
interval of 2, because three non-.M units can be used on a side during each
cycle.

Table 6–22. Resource Table for Live-Too-Long Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 MPY 1 .M2 MPY 1

.S1 B and SHR 2 .S2 SHR 1

.D1 LDH 1 .D2 LDH 1

.L1, .S1, or .D1 2 ADDs 2 .L2, .S2, or .D2 2 ADDs and SUB 3

Total non-.M units 5 Total non-.M units 5

However, the minimum iteration interval is determined by both resources and
data dependency. A loop carry path determined the minimum iteration interval
of the IIR filter in section 6.7, Loop Carry Paths, on page 6-77. In this example,
a live-too-long problem determines the minimum iteration interval.

6.10.4.1 Split-Join-Path Problems

In Figure 6–19, the two split-join paths from a0 to a3 and from b0 to b3 create
the live-too-long problem. Because the ADD a3 instruction cannot be sched-
uled until the SHR a1 and MPY a2 instructions finish, a0 must be live for at least
four cycles. For example:

� If MPY a0 is scheduled on cycle 5, then the earliest SHR a1 can be sched-
uled is cycle 7.

� The earliest MPY a2 can be scheduled is cycle 8.

� The earliest ADD a3 can be scheduled is cycle 10.
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Because a0 is written at the end of cycle 6, it must be live from cycle 7 to
cycle 10, or four cycles. No value can be live longer than the minimum iteration
interval, because the next iteration of the loop will overwrite that value before
the current iteration can read the value. Therefore, if the value has to be live
for four cycles, the minimum iteration interval must be at least 4. A minimum
iteration interval of 4 means that the loop executes at half the performance that
it could based on available resources.

6.10.4.2 Unrolling the Loop

One way to solve this problem is to unroll the loop, so that you are doing twice
as much work in each iteration. After unrolling, the minimum iteration interval
is 4, based on both the resources and the data dependencies of the split-join
path. Although unrolling the loop allows you to achieve the highest possible
loop throughput, unrolling the loop does increase the code size.

6.10.4.3 Inserting Moves

Another solution to the live-too-long problem is to break up the lifetime of a0
and b0 by inserting move (MV) instructions. The MV instruction breaks up the
left path of the split-join path into two smaller pieces.

6.10.4.4 Drawing a New Dependency Graph

Figure 6–20 shows the new dependency graph with the MV instructions. Now
the left paths of the split-join paths are broken into two pieces. Each value, a0
and a0’, can be live for minimum iteration interval cycles. If MPY a0 is sched-
uled on cycle 5 and ADD a3 is scheduled on cycle 10, you can achieve a mini-
mum iteration interval of 2 by scheduling MV a0’ on cycle 8. Then a0 is live on
cycles 7 and 8, and a0’ is live on cycles 9 and 10. Because no values are live
more than two cycles, the minimum iteration interval for this graph is 2.
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Figure 6–20. Dependency Graph of Live-Too-Long Code (Split-Join Path Resolved)
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6.10.5 Linear Assembly Resource Allocation

Example 6–58 shows the linear assembly code with the functional units as-
signed. The choice of units for the ADDs and SUB is flexible and represents
one of a number of possibilities. One goal is to ensure that no functional unit
is used more than the minimum iteration interval, or two times.

The two 2X paths and one 1X path are required because the values c, d, and
e reside on the side opposite from the instruction that is reading them. If these
values had created a bottleneck of resources and caused the minimum itera-
tion interval to increase, c, d, and e could have been loaded into the opposite
register file outside the loop to eliminate the cross path.
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Example 6–58. Linear Assembly for Full Live-Too-Long Code

.global _live_long

_live_long: .cproc   a, b, c, d, e

.reg ai, bi, sum0, sum1, sum

.reg a0p, a_0, a_1, a_2, a_3, b_0, b0p, b_1, b_2, b_3, cntr
 

MVK 100,cntr ; cntr = 100
ZERO sum0 ; sum0 = 0
ZERO sum1 ; sum1 = 0

LOOP: .trip 100
LDH .D1 *a++,ai ; load ai from memory
LDH .D2 *b++,bi ; load bi from memory
MPY .M1 ai,c,a_0 ; a0 = ai * c
SHR .S1 a_0,15,a_1 ; a1 = a0 >> 15
MPY .M1X a_1,d,a_2 ; a2 = a1 * d
MV .D1 a_0,a0p ; save a0 across iterations
ADD .L1 a_2,a0p,a_3 ; a3 = a2 + a0
ADD .L1 sum0,a_3,sum0 ; sum0 += a3
MPY .M2X bi,c,b_0 ; b0 = bi * ci
SHR .S2 b_0,15,b_1 ; b1 = b0 >> 15
MPY .M2X b_1,e,b_2 ; b2 = b1 * e
MV .D2 b_0,b0p ; save b0 across iterations
ADD .L2 b_2,b0p,b_3 ; b3 = b2 + b0
ADD .L2 sum1,b_3,sum1 ; sum1 += b3

[cntr] SUB .S2 cntr,1,cntr ; decrement loop counter
[cntr] B .S1 LOOP ; branch to loop

ADD sum0,sum1,sum ; Add sumi and sumi+1 for ret value

.return sum

.endproc
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6.10.6 Final Assembly With Move Instructions

Example 6–59 shows the final assembly code after software pipelining. The
performance of this loop is 212 cycles (2 �100 + 11 + 1).

Example 6–59. Assembly Code for Live-Too-Long With Move Instructions 

LDH .D1 *A4++,A0 ; load ai from memory
|| LDH .D2 *B4++,B0 ; load bi from memory

MVK .S2 100,B2 ; set up loop counter

LDH .D1 *A4++,A0 ;* load ai from memory
|| LDH .D2 *B4++,B0 ;* load bi from memory

ZERO .S1 A1 ; zero out accumulator
|| ZERO .S2 B1 ; zero out accumulator

LDH .D1 *A4++,A0 ;** load ai from memory
|| LDH .D2 *B4++,B0 ;** load bi from memory

  [B2] SUB .S2 B2,1,B2 ; decrement loop counter

MPY .M1 A0,A6,A3 ; a0 = ai * c
|| MPY .M2X B0,A6,B10 ; b0 = bi * c
|| LDH .D1 *A4++,A0 ;*** load ai from memory
|| LDH .D2 *B4++,B0 ;*** load bi from memory

  [B2] SUB .S2 B2,1,B2 ; decrement loop counter
||[B2] B .S1 LOOP ; branch to loop

SHR .S1 A3,15,A5 ; a1 = a0 >> 15
|| SHR .S2 B10,15,B5 ; b1 = b0 >> 15
|| MPY .M1 A0,A6,A3 ;* a0 = ai * c
|| MPY .M2X B0,A6,B10 ;* b0 = bi * c
|| LDH .D1 *A4++,A0 ;**** load ai from memory
|| LDH .D2 *B4++,B0 ;**** load bi from memory

MPY .M1X A5,B6,A7 ; a2 = a1 * d
|| MV .D1 A3,A2 ; save a0 across iterations
|| MPY .M2X B5,A8,B7 ; b2 = b1 * e
|| MV .D2 B10,B8 ; save b0 across iterations
||[B2] SUB .S2 B2,1,B2 ;* decrement loop counter
||[B2] B .S1 LOOP ;* branch to loop

SHR .S1 A3,15,A5 ;* a1 = a0 >> 15
|| SHR .S2 B10,15,B5 ;* b1 = b0 >> 15
|| MPY .M1 A0,A6,A3 ;** a0 = ai * c
|| MPY .M2X B0,A6,B10 ;** b0 = bi * c
|| LDH .D1 *A4++,A0 ;***** load ai from memory
|| LDH .D2 *B4++,B0 ;***** load bi from memory



Live-Too-Long Issues

6-109Optimizing Assembly Code via Linear Assembly

Example 6–59. Assembly Code for Live-Too-Long With Move Instructions (Continued)

LOOP:
ADD .L1 A7,A2,A9 ;* a3 = a2 + a0

|| ADD .L2 B7,B8,B9 ;* b3 = b2 + b0
|| MPY .M1X A5,B6,A7 ;* a2 = a1 * d
|| MV .D1 A3,A2 ;* save a0 across iterations
|| MPY .M2X B5,A8,B7 ;* b2 = b1 * e
|| MV .D2 B10,B8 ;* save b0 across iterations
||[B2] SUB .S2 B2,1,B2 ;** decrement loop counter
||[B2] B .S1 LOOP ;** branch to loop

ADD .L1 A1,A9,A1 ; sum0 += a3
|| ADD .L2 B1,B9,B1 ; sum1 += b3
|| SHR .S1 A3,15,A5 ;** a1 = a0 >> 15
|| SHR .S2 B10,15,B5 ;** b1 = b0 >> 15
|| MPY .M1 A0,A6,A3 ;*** a0 = ai * c
|| MPY .M2X B0,A6,B10 ;*** b0 = bi * c
|| LDH .D1 *A4++,A0 ;****** load ai from memory
|| LDH .D2 *B4++,B0 ;****** load bi from memory

; Branch occurs here

ADD .L1X A1,B1,A4 ; sum = sum0 + sum1
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6.11 Redundant Load Elimination
Filter algorithms typically read the same value from memory multiple times and
are, therefore, prime candidates for optimization by eliminating redundant load
instructions. Rather than perform a load operation each time a particular value
is read, you can keep the value in a register and read the register multiple
times.

6.11.1 FIR Filter C Code

Example 6–60 shows C code for a simple FIR filter. There are two memory
reads (x[i+j] and h[i]) for each multiply. Because the ’C6000 can perform only
two LDHs per cycle, it seems, at first glance, that only one multiply-accumulate
per cycle is possible.

Example 6–60. FIR Filter C Code

void fir(short x[], short h[], short y[])
{

int i, j, sum;

for (j = 0; j < 100; j++) {
sum = 0;
for (i = 0; i < 32; i++)

sum += x[i+j] * h[i];
y[j] = sum >> 15;

}
}

One way to optimize this situation is to perform LDWs instead of LDHs to read
two data values at a time. Although using LDW works for the h array, the x array
presents a different problem because the ’C6x does not allow you to load
values across a word boundary.

For example, on the first outer loop (j = 0), you can read the x-array elements
(0 and 1, 2 and 3, etc.) as long as elements 0 and 1 are aligned on a 4-byte
word boundary. However, the second outer loop (j = 1) requires reading x-array
elements 1 through 32. The LDW operation must load elements that are not
word-aligned (1 and 2, 3 and 4, etc.).

6.11.1.1 Redundant Loads

In order to achieve two multiply-accumulates per cycle, you must reduce the
number of LDHs. Because successive outer loops read all the same h-array
values and almost all of the same x-array values, you can eliminate the redun-
dant loads by unrolling the inner and outer loops.

For example, x[1] is needed for the first outer loop (x[j+1] with j = 0) and for the
second outer loop (x[j] with j = 1). You can use a single LDH instruction to load
this value.
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6.11.1.2 New FIR Filter C Code

Example 6–61 shows that after eliminating redundant loads, there are four
memory-read operations for every four multiply-accumulate operations. Now
the memory accesses no longer limit the performance.

Example 6–61. FIR Filter C Code With Redundant Load Elimination

void fir(short x[], short h[], short y[])
{

int i, j, sum0, sum1;
short x0,x1,h0,h1;

for (j = 0; j < 100; j+=2) {
sum0 = 0;
sum1 = 0;
x0 = x[j];
for (i = 0; i < 32; i+=2){

x1 = x[j+i+1];
h0 = h[i];
sum0 += x0 * h0;
sum1 += x1 * h0;
x0 = x[j+i+2];
h1 = h[i+1];
sum0 += x1 * h1;
sum1 += x0 * h1;
}

y[j] = sum0 >> 15;
y[j+1] = sum1 >> 15;

}
}
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6.11.2 Translating C Code to Linear Assembly

Example 6–62 shows the linear assembly that perform the inner loop of the
FIR filter C code.

Element x0 is read by the MPY p00 before it is loaded by the LDH x0 instruc-
tion; x[j] (the first x0) is loaded outside the loop, but successive even elements
are loaded inside the loop.

Example 6–62. Linear Assembly for FIR Inner Loop

LDH .D2 *x_1++[2],x1 ; x1 = x[j+i+1]
LDH .D1 *h++[2],h0 ; h0 = h[i]
MPY .M1 x0,h0,p00 ; x0 * h0
MPY .M1X x1,h0,p10 ; x1 * h0
ADD .L1 p00,sum0,sum0 ; sum0 += x0 * h0
ADD .L2X p10,sum1,sum1 ; sum1 += x1 * h0

LDH .D1 *x++[2],x0 ; x0 = x[j+i+2]
LDH .D2 *h_1++[2],h1 ; h1 = h[i+1]
MPY .M2 x1,h1,p01 ; x1 * h1
MPY .M2X x0,h1,p11 ; x0 * h1
ADD .L1X p01,sum0,sum0 ; sum0 += x1 * h1
ADD .L2 p11,sum1,sum1 ; sum1 += x0 * h1

 [ctr] SUB .S2 ctr,1,ctr ; decrement loop counter
 [ctr] B .S2 LOOP ; branch to loop
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6.11.3 Drawing a Dependency Graph

Figure 6–21 shows the dependency graph of the FIR filter with redundant load
elimination.

Figure 6–21. Dependency Graph of FIR Filter (With Redundant Load Elimination)
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6.11.4 Determining the Minimum Iteration Interval

Table 6–23 shows that the minimum iteration interval is 2. An iteration interval
of 2 means that two multiply-accumulates are executing per cycle.

Table 6–23. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 2 MPYs 2 .M2 2 MPYs 2

.S1  0 .S2 B 1

.D1 2 LDHs 2 .D2 2 LDHs 2

.L1, .S1, or .D1 2 ADDs 2 .L2, .S2, .D2 2 ADDs and SUB 3

Total non-.M units 4 Total non-.M units 6

1X paths 2 2X paths 2

6.11.5 Linear Assembly Resource Allocation

Example 6–63 shows the linear assembly with functional units and registers
assigned.

Example 6–63. Linear Assembly for Full FIR Code

.global _fir

_fir: .cproc   x, h, y

.reg x_1, h_1, sum0, sum1, ctr, octr

.reg p00, p01, p10, p11, x0, x1, h0, h1, rstx, rsth
 

ADD h,2,h_1 ; set up pointer to h[1]
MVK 50,octr ; outer loop ctr = 100/2
MVK 64,rstx ; used to rst x pointer each outer loop
MVK 64,rsth ; used to rst h pointer each outer loop

OUTLOOP:
ADD x,2,x_1 ; set up pointer to x[j+1]
SUB h_1,2,h ; set up pointer to h[0]
MVK 16,ctr ; inner loop ctr = 32/2
ZERO sum0 ; sum0 = 0
ZERO sum1 ; sum1 = 0

 [octr] SUB octr,1,octr ; decrement outer loop counter

LDH .D1 *x++[2],x0 ; x0 = x[j]
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Example 6–63. Linear Assembly for Full FIR Code (Continued)

LOOP: .trip 16

LDH .D2 *x_1++[2],x1 ; x1 = x[j+i+1]
LDH .D1 *h++[2],h0 ; h0 = h[i]
MPY .M1 x0,h0,p00 ; x0 * h0
MPY .M1X x1,h0,p10 ; x1 * h0
ADD .L1 p00,sum0,sum0 ; sum0 += x0 * h0
ADD .L2X p10,sum1,sum1 ; sum1 += x1 * h0

LDH .D1 *x++[2],x0 ; x0 = x[j+i+2]
LDH .D2 *h_1++[2],h1 ; h1 = h[i+1]
MPY .M2 x1,h1,p01 ; x1 * h1
MPY .M2X x0,h1,p11 ; x0 * h1
ADD .L1X p01,sum0,sum0 ; sum0 += x1 * h1
ADD .L2 p11,sum1,sum1 ; sum1 += x0 * h1

 [ctr] SUB .S2 ctr,1,ctr ; decrement loop counter
 [ctr] B .S2 LOOP ; branch to loop

SHR sum0,15,sum0 ; sum0 >> 15
SHR sum1,15,sum1 ; sum1 >> 15
STH sum0,*y++ ; y[j] = sum0 >> 15
STH sum1,*y++ ; y[j+1] = sum1 >> 15
SUB x,rstx,x ; reset x pointer to x[j]
SUB h_1,rsth,h_1 ; reset h pointer to h[0]

 [octr] B OUTLOOP ; branch to outer loop

.endproc

6.11.6 Final Assembly

Example 6–64 shows the final assembly for the FIR filter without redundant
load instructions. At the end of the inner loop is a branch to OUTLOOP that
executes the next outer loop. The outer loop counter is 50 because iterations
j and j + 1 execute each time the inner loop is run. The inner loop counter is
16 because iterations i and i + 1 execute each inner loop iteration.

The cycle count for this nested loop is 2352 cycles: 50 (16 � 2 + 9 + 6) + 2.
Fifteen cycles are overhead for each outer loop:

� Nine cycles execute the inner loop prolog.
� Six cycles execute the branch to the outer loop.

See section 6.13, Software Pipelining the Outer Loop, on page 6-131 for in-
formation on how to reduce this overhead.
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Example 6–64. Final Assembly Code for FIR Filter With Redundant Load Elimination 

MVK .S1 50,A2 ; set up outer loop counter

MVK .S1 80,A3 ; used to rst x ptr outer loop
|| MVK .S2 82,B6 ; used to rst h ptr outer loop

OUTLOOP:
LDH .D1 *A4++[2],A0 ; x0 = x[j]

|| ADD .L2X A4,2,B5 ; set up pointer to x[j+1]
|| ADD .D2 B4,2,B4 ; set up pointer to h[1]
|| ADD .L1X B4,0,A5 ; set up pointer to h[0]
|| MVK .S2 16,B2 ; set up inner loop counter
||[A2] SUB .S1 A2,1,A2 ; decrement outer loop counter

  LDH .D1 *A5++[2],A1 ; h0 = h[i]
|| LDH .D2 *B5++[2],B1 ; x1 = x[j+i+1]
|| ZERO .L1 A9 ; zero out sum0
|| ZERO .L2 B9 ; zero out sum1

  LDH .D2 *B4++[2],B0 ; h1 = h[i+1]
|| LDH .D1 *A4++[2],A0 ; x0 = x[j+i+2]

  LDH .D1 *A5++[2],A1 ;* h0 = h[i]
|| LDH .D2 *B5++[2],B1 ;* x1 = x[j+i+1]

  [B2] SUB .S2 B2,1,B2 ; decrement inner loop counter
||  LDH .D2 *B4++[2],B0 ;* h1 = h[i+1]
|| LDH .D1 *A4++[2],A0 ;* x0 = x[j+i+2]

  [B2] B .S2 LOOP ; branch to inner loop
|| LDH .D1 *A5++[2],A1 ;** h0 = h[i]
|| LDH .D2 *B5++[2],B1 ;** x1 = x[j+i+1]

  MPY .M1 A0,A1,A7 ; x0 * h0
||[B2] SUB .S2 B2,1,B2 ;* decrement inner loop counter
|| LDH .D2 *B4++[2],B0 ;** h1 = h[i+1]
|| LDH .D1 *A4++[2],A0 ;** x0 = x[j+i+2]

  MPY .M2 B1,B0,B7 ; x1 * h1
|| MPY .M1X B1,A1,A8 ; x1 * h0
||[B2] B .S2 LOOP ;* branch to inner loop
|| LDH .D1 *A5++[2],A1 ;*** h0 = h[i]
|| LDH .D2 *B5++[2],B1 ;*** x1 = x[j+i+1]

  MPY .M2X A0,B0,B8 ; x0 * h1
|| MPY .M1 A0,A1,A7 ;* x0 * h0
||[B2] SUB .S2 B2,1,B2 ;** decrement inner loop counter
|| LDH .D2 *B4++[2],B0 ;*** h1 = h[i+1]
|| LDH .D1 *A4++[2],A0 ;*** x0 = x[j+i+2]
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Example 6–64 Final Assembly Code for FIR Filter With Redundant Load Elimination 
(Continued)

LOOP:
  ADD .L2X A8,B9,B9 ; sum1 += x1 * h0
|| ADD .L1 A7,A9,A9 ; sum0 += x0 * h0
|| MPY .M2 B1,B0,B7 ;* x1 * h1
|| MPY .M1X B1,A1,A8 ;* x1 * h0
||[B2] B .S2 LOOP ;** branch to inner loop
|| LDH .D1 *A5++[2],A1 ;**** h0 = h[i]
|| LDH .D2 *B5++[2],B1 ;**** x1 = x[j+i+1]

  ADD .L1X B7,A9,A9 ; sum0 += x1 * h1
|| ADD .L2 B8,B9,B9 ; sum1 += x0 * h1
|| MPY .M2X A0,B0,B8 ;* x0 * h1
|| MPY .M1 A0,A1,A7 ;** x0 * h0
||[B2] SUB .S2 B2,1,B2 ;*** decrement inner loop cntr
|| LDH .D2 *B4++[2],B0 ;**** h1 = h[i+1]
|| LDH .D1 *A4++[2],A0 ;**** x0 = x[j+i+2]

; inner loop branch occurs here

  [A2] B .S1 OUTLOOP ; branch to outer loop
|| SUB .L1 A4,A3,A4 ; reset x pointer to x[j]
|| SUB .L2 B4,B6,B4 ; reset h pointer to h[0]

SHR .S1 A9,15,A9 ; sum0 >> 15
|| SHR .S2 B9,15,B9 ; sum1 >> 15

STH .D1 A9,*A6++ ; y[j] = sum0 >> 15

STH .D1 B9,*A6++ ; y[j+1] = sum1 >> 15

NOP 2 ; branch delay slots
; outer loop branch occurs here
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6.12 Memory Banks

The internal memory of the ’C6000 family varies from device to device. See
the TMS320C6000 Peripherals Reference Guide to determine the memory
blocks in your particular device. This section discusses how to write code to
avoid memory bank conflicts.

Most ’C6x devices use an interleaved memory bank scheme, as shown in
Figure 6–22. Each number in the boxes represents a byte address. A load byte
(LDB) instruction from address 0 loads byte 0 in bank 0. A load halfword (LDH)
from address 0 loads the halfword value in bytes 0 and 1, which are also in
bank 0. An LDW from address 0 loads bytes 0 through 3 in banks 0 and 1.

Because each bank is single-ported memory, only one access to each bank
is allowed per cycle. Two accesses to a single bank in a given cycle result in
a memory stall that halts all pipeline operation for one cycle, while the second
value is read from memory. Two memory operations per cycle are allowed
without any stall, as long as they do not access the same bank.

Figure 6–22. 4-Bank Interleaved Memory
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For devices that have more than one memory block (see Figure 6–23), an
access to bank 0 in one block does not interfere with an access to bank 0 in
another memory block, and no pipeline stall occurs.
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Figure 6–23. 4-Bank Interleaved Memory With Two Memory Blocks
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If each array in a loop resides in a separate memory block, the 2-cycle loop
in Example 6–61 on page 6-111 is sufficient. This section describes a solution
when two arrays must reside in the same memory block.
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6.12.1 FIR Filter Inner Loop

Example 6–65 shows the inner loop from the final assembly in Example 6–64.
The LDHs from the h array are in parallel with LDHs from the x array. If x[1] is
on an even halfword (bank 0) and h[0] is on an odd halfword (bank 1),
Example 6–65 has no memory conflicts. However, if both x[1] and h[0] are on
an even halfword in memory (bank 0) and they are in the same memory block,
every cycle incurs a memory pipeline stall and the loop runs at half the speed.

Example 6–65. Final Assembly Code for Inner Loop of FIR Filter

LOOP:
  ADD .L2X A8,B9,B9 ; sum1 += x1 * h0
|| ADD .L1 A7,A9,A9 ; sum0 += x0 * h0
|| MPY .M2 B1,B0,B7 ;* x1 * h1
|| MPY .M1X B1,A1,A8 ;* x1 * h0
||[B2] B .S2 LOOP ;** branch to inner loop
|| LDH .D1 *A5++[2],A1 ;**** h0 = h[i]
|| LDH .D2 *B5++[2],B1 ;**** x1 = x[j+i+1]

  ADD .L1X B7,A9,A9 ; sum0 += x1 * h1
|| ADD .L2 B8,B9,B9 ; sum1 += x0 * h1
|| MPY .M2X A0,B0,B8 ;* x0 * h1
|| MPY .M1 A0,A1,A7 ;** x0 * h0
||[B2] SUB .S2 B2,1,B2 ;*** decrement inner loop cntr
|| LDH .D2 *B4++[2],B0 ;**** h1 = h[i+1]
|| LDH .D1 *A4++[2],A0 ;**** x0 = x[j+i+2]

It is not always possible to fully control how arrays are aligned, especially if one
of the arrays is passed into a function as a pointer and that pointer has different
alignments each time the function is called. One solution to this problem is to
write an FIR filter that avoids memory hits, regardless of the x and h array align-
ments.

If accesses to the even and odd elements of an array (h or x) are scheduled
on the same cycle, the accesses are always on adjacent memory banks. Thus,
to write an FIR filter that never has memory hits, even and odd elements of the
same array must be scheduled on the same loop cycle.
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In the case of the FIR filter, scheduling the even and odd elements of the same
array on the same loop cycle cannot be done in a 2-cycle loop, as shown in
Figure 6–24. In this example, a valid 2-cycle software-pipelined loop without
memory constraints is ruled by the following constraints:

� LDH h0 and LDH h1 are on the same loop cycle.

� LDH x0 and LDH x1 are on the same loop cycle.

� MPY p00 must be scheduled three or four cycles after LDH x0, because
it must read x0 from the previous iteration of LDH x0.

� All MPYs must be five or six cycles after their LDH parents.

� No MPYs on the same side (A or B) can be on the same loop cycle.

Figure 6–24. Dependency Graph of FIR Filter (With Even and Odd Elements of 
Each Array on Same Loop Cycle)
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Note: Numbers in bold represent the cycle the instruction is scheduled on.

The scenario in Figure 6–24 almost works. All nodes satisfy the above
constraints except MPY p10. Because one parent is on cycle 1 (LDH h0) and
another on cycle 0 (LDH x1), the only cycle for MPY p10 is cycle 6. However,
another MPY on the A side is also scheduled on cycle 6 (MPY p00). Other
combinations of cycles for this graph produce similar results.
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6.12.2 Unrolled FIR Filter C Code

The main limitation in solving the problem in Figure 6–24 is in scheduling a 2-
cycle loop, which means that no value can be live more than two cycles. In-
creasing the iteration interval to 3 decreases performance. A better solution
is to unroll the inner loop one more time and produce a 4-cycle loop.

Example 6–66 shows the FIR filter C code after unrolling the inner loop one
more time. This solution adds to the flexibility of scheduling and allows you to
write FIR filter code that never has memory hits, regardless of array alignment
and memory block.

Example 6–66. FIR Filter C Code (Unrolled)

void fir(short x[], short h[], short y[])
{

int i, j, sum0, sum1;
short x0,x1,x2,x3,h0,h1,h2,h3;

for (j = 0; j < 100; j+=2) {
sum0 = 0;
sum1 = 0;
x0 = x[j];
for (i = 0; i < 32; i+=4){

x1 = x[j+i+1];
h0 = h[i];
sum0 += x0 * h0;
sum1 += x1 * h0;
x2 = x[j+i+2];
h1 = h[i+1];
sum0 += x1 * h1;
sum1 += x2 * h1;
x3 = x[j+i+3];
h2 = h[i+2];
sum0 += x2 * h2;
sum1 += x3 * h2;
x0 = x[j+i+4];
h3 = h[i+3];
sum0 += x3 * h3;
sum1 += x0 * h3;
}

y[j] = sum0 >> 15;
y[j+1] = sum1 >> 15;

}
}
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6.12.3 Translating C Code to Linear Assembly

Example 6–67 shows the linear assembly for the unrolled inner loop of the FIR
filter C code.

Example 6–67. Linear Assembly for Unrolled FIR Inner Loop

LDH *x++,x1 ; x1 = x[j+i+1]
LDH *h++,h0 ; h0 = h[i]
MPY x0,h0,p00 ; x0 * h0
MPY x1,h0,p10 ; x1 * h0
ADD p00,sum0,sum0 ; sum0 += x0 * h0
ADD p10,sum1,sum1 ; sum1 += x1 * h0

LDH *x++,x2 ; x2 = x[j+i+2]
LDH *h++,h1 ; h1 = h[i+1]
MPY x1,h1,p01 ; x1 * h1
MPY x2,h1,p11 ; x2 * h1
ADD p01,sum0,sum0 ; sum0 += x1 * h1
ADD p11,sum1,sum1 ; sum1 += x2 * h1

LDH *x++,x3 ; x3 = x[j+i+3]
LDH *h++,h2 ; h2 = h[i+2]
MPY x2,h2,p02 ; x2 * h2
MPY x3,h2,p12 ; x3 * h2
ADD p02,sum0,sum0 ; sum0 += x2 * h2
ADD p12,sum1,sum1 ; sum1 += x3 * h2

LDH *x++,x0 ; x0 = x[j+i+4]
LDH *h++,h3 ; h3 = h[i+3]
MPY x3,h3,p03 ; x3 * h3
MPY x0,h3,p13 ; x0 * h3
ADD p03,sum0,sum0 ; sum0 += x3 * h3
ADD p13,sum1,sum1 ; sum1 += x0 * h3

 [cntr] SUB cntr,1,cntr ; decrement loop counter
 [cntr] B LOOP ; branch to loop
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6.12.4 Drawing a Dependency Graph

Figure 6–25 shows the dependency graph of the FIR filter with no memory
hits.

Figure 6–25. Dependency Graph of FIR Filter (With No Memory Hits)
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6.12.5 Linear Assembly for Unrolled FIR Inner Loop With .mptr Directive

Example 6–68 shows the unrolled FIR inner loop with the .mptr directive. The
.mptr directive allows the assembly optimizer to automatically determine if two
memory operations have a bank conflict by associating memory access infor-
mation with a specific pointer register.

If the assembly optimizer determines that two memory operations have a bank
conflict, then it will not schedule them in parallel. The .mptr directive tells the
assembly optimizer that when the specified register is used as a memory point-
er in a load or store instruction, it is initialized to point at a base location + <off-
set>, and is incremented a number of times each time through the loop.

Without the .mptr directives, the loads of x1 and h0 are scheduled in parallel,
and the loads of x2 and h1 are scheduled in parallel. This results in a 50%
chance of a memory conflict on every cycle.

Example 6–68. Linear Assembly for Full Unrolled FIR Filter

.global _fir

_fir: .cproc x, h, y

.reg x_1, h_1, sum0, sum1, ctr, octr

.reg p00, p01, p02, p03, p10, p11, p12, p13

.reg x0, x1, x2, x3, h0, h1, h2, h3, rstx, rsth
 

ADD h,2,h_1 ; set up pointer to h[1]
MVK 50,octr ; outer loop ctr = 100/2
MVK 64,rstx ; used to rst x pointer each outer loop
MVK 64,rsth ; used to rst h pointer each outer loop

OUTLOOP:
ADD x,2,x_1 ; set up pointer to x[j+1]
SUB h_1,2,h ; set up pointer to h[0]
MVK 8,ctr ; inner loop ctr = 32/2
ZERO sum0 ; sum0 = 0
ZERO sum1 ; sum1 = 0

 [octr] SUB octr,1,octr ; decrement outer loop counter

.mptr x,   x+0

.mptr x_1, x+2

.mptr h,   h+0

.mptr h_1, h+2

LDH .D2 *x++[2],x0 ; x0 = x[j]
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Example 6–68. Linear Assembly for Full Unrolled FIR Filter (Continued)

LOOP:   .trip 8

LDH .D1 *x_1++[2],x1 ; x1 = x[j+i+1]
LDH .D1 *h++[2],h0 ; h0 = h[i]
MPY .M1X x0,h0,p00 ; x0 * h0
MPY .M1 x1,h0,p10 ; x1 * h0
ADD .L1 p00,sum0,sum0 ; sum0 += x0 * h0
ADD .L2X p10,sum1,sum1 ; sum1 += x1 * h0

LDH .D2 *x++[2],x2 ; x2 = x[j+i+2]
LDH .D2 *h_1++[2],h1 ; h1 = h[i+1]
MPY .M2X x1,h1,p01 ; x1 * h1
MPY .M2 x2,h1,p11 ; x2 * h1
ADD .L1X p01,sum0,sum0 ; sum0 += x1 * h1
ADD .L2 p11,sum1,sum1 ; sum1 += x2 * h1

LDH .D1 *x_1++[2],x3 ; x3 = x[j+i+3]
LDH .D1 *h++[2],h2 ; h2 = h[i+2]
MPY .M1X x2,h2,p02 ; x2 * h2
MPY .M1 x3,h2,p12 ; x3 * h2
ADD .L1 p02,sum0,sum0 ; sum0 += x2 * h2
ADD .L2X p12,sum1,sum1 ; sum1 += x3 * h2

LDH .D2 *x++[2],x0 ; x0 = x[j+i+4]
LDH .D2 *h_1++[2],h3 ; h3 = h[i+3]
MPY .M2X x3,h3,p03 ; x3 * h3
MPY .M2 x0,h3,p13 ; x0 * h3
ADD .L1X p03,sum0,sum0 ; sum0 += x3 * h3
ADD .L2 p13,sum1,sum1 ; sum1 += x0 * h3

[ctr] SUB .S2 ctr,1,ctr ; decrement loop counter
[ctr] B .S2 LOOP ; branch to loop

SHR sum0,15,sum0 ; sum0 >> 15
SHR sum1,15,sum1 ; sum1 >> 15
STH sum0,*y++ ; y[j] = sum0 >> 15
STH sum1,*y++ ; y[j+1] = sum1 >> 15
SUB x,rstx,x ; reset x pointer to x[j]
SUB h_1,rsth,h_1 ; reset h pointer to h[0]

 [octr] B OUTLOOP ; branch to outer loop

.endproc
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6.12.6 Linear Assembly Resource Allocation

As the number of instructions in a loop increases, assigning a specific register
to every value in the loop becomes increasingly difficult. If 33 instructions in
a loop each write a value, they cannot each write to a unique register because
the ’C62x and ’C67x have only 32 registers. This would also work on the ’C64x
which has 64 registers. As a result, values that are not live on the same cycles
in the loop must share registers.

For example, in a 4-cycle loop:

� If a value is written at the end of cycle 0 and read on cycle 2 of the loop,
it is live for two cycles (cycles 1 and 2 of the loop).

� If another value is written at the end of cycle 2 and read on cycle 0 (the next
iteration) of the loop, it is also live for two cycles (cycles 3 and 0 of the loop).

Because both of these values are not live on the same cycles, they can occupy
the same register. Only after scheduling these instructions and their children
do you know that they can occupy the same register.

Register allocation is not complicated but can be tedious when done by hand.
Each value has to be analyzed for its lifetime and then appropriately combined
with other values not live on the same cycles in the loop. The assembly opti-
mizer handles this automatically after it software pipelines the loop. See the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide for more informa-
tion.
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6.12.7 Determining the Minimum Iteration Interval

Based on Table 6–24, the minimum iteration interval for the FIR filter with no
memory hits should be 4. An iteration interval of 4 means that two multiply/ac-
cumulates still execute per cycle.

Table 6–24. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Instructions Total/Unit Unit(s) Instructions Total/Unit

.M1 4 MPYs 4 .M2 4 MPYs 4

.S1  0 .S2 B 1

.D1 4 LDHs 4 .D2 4 LDHs 4

.L1, .S1, or .D1 4 ADDs 4 .L2, .S2, or .D2 4 ADDs and SUB 5

Total non-.M units 8 Total non-.M units 10

1X paths 4 2X paths 4

6.12.8 Final Assembly

Example 6–69 shows the final assembly to the FIR filter with redundant load
elimination and no memory hits. At the end of the inner loop, there is a branch
to OUTLOOP to execute the next outer loop. The outer loop counter is set to
50 because iterations j and j+1 are executing each time the inner loop is run.
The inner loop counter is set to 8 because iterations i, i + 1, i + 2, and i + 3 are
executing each inner loop iteration.

6.12.9 Comparing Performance

The cycle count for this nested loop is 2402 cycles. There is a rather large
outer-loop overhead for executing the branch to the outer loop (6 cycles) and
the inner loop prolog (10 cycles). Section 6.13 addresses how to reduce this
overhead by software pipelining the outer loop.

Table 6–25. Comparison of FIR Filter Code

Code Example Cycles Cycle Count

Example 6–64 FIR with redundant load elimination 50 (16 � 2 + 9 + 6) + 2 2352

Example 6–69 FIR with redundant load elimination and no
memory hits

50 (8 � 4 + 10 + 6) + 2 2402
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Example 6–69. Final Assembly Code for FIR Filter With Redundant Load Elimination 
and No Memory Hits

MVK .S1 50,A2 ; set up outer loop counter

MVK .S1 62,A3 ; used to rst x pointer outloop
|| MVK .S2 64,B10 ; used to rst h pointer outloop

OUTLOOP:
LDH .D1 *A4++,B5 ; x0 = x[j]

|| ADD .L2X A4,4,B1 ; set up pointer to x[j+2]
|| ADD .L1X B4,2,A8 ; set up pointer to h[1]
|| MVK .S2 8,B2 ; set up inner loop counter
||[A2] SUB .S1 A2,1,A2 ; decrement outer loop counter

  LDH .D2 *B1++[2],B0 ; x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ; x1 = x[j+i+1]
|| ZERO .L1 A9 ; zero out sum0
|| ZERO .L2 B9 ; zero out sum1

  LDH .D1 *A8++[2],B6 ; h1 = h[i+1]
|| LDH .D2 *B4++[2],A1 ; h0 = h[i]

  LDH .D1 *A4++[2],A5 ; x3 = x[j+i+3]
|| LDH .D2 *B1++[2],B5 ; x0 = x[j+i+4]

  LDH .D2 *B4++[2],A7 ; h2 = h[i+2]
|| LDH .D1 *A8++[2],B8 ; h3 = h[i+3]
||[B2] SUB .S2 B2,1,B2 ; decrement loop counter

  LDH .D2 *B1++[2],B0 ;* x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ;* x1 = x[j+i+1]

LDH .D1 *A8++[2],B6 ;* h1 = h[i+1]
|| LDH .D2 *B4++[2],A1 ;* h0 = h[i]

  MPY .M1X B5,A1,A0 ; x0 * h0
|| MPY .M2X A0,B6,B6 ; x1 * h1
|| LDH .D1 *A4++[2],A5 ;* x3 = x[j+i+3]
|| LDH .D2 *B1++[2],B5 ;* x0 = x[j+i+4]

  [B2] B .S1 LOOP ; branch to loop
|| MPY .M2 B0,B6,B7 ; x2 * h1
|| MPY .M1 A0,A1,A1 ; x1 * h0
|| LDH .D2 *B4++[2],A7 ;* h2 = h[i+2]
|| LDH .D1 *A8++[2],B8 ;* h3 = h[i+3]
||[B2] SUB .S2 B2,1,B2 ;* decrement loop counter

  ADD .L1 A0,A9,A9 ; sum0 += x0 * h0
|| MPY .M2X A5,B8,B8 ; x3 * h3
|| MPY .M1X B0,A7,A5 ; x2 * h2
|| LDH .D2 *B1++[2],B0 ;** x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ;** x1 = x[j+i+1]
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Example 6–69. Final Assembly Code for FIR Filter With Redundant Load Elimination 
and No Memory Hits (Continued)

LOOP:
  ADD .L2X A1,B9,B9 ; sum1 += x1 * h0
|| ADD .L1X B6,A9,A9 ; sum0 += x1 * h1
|| MPY .M2 B5,B8,B7 ; x0 * h3
|| MPY .M1 A5,A7,A7 ; x3 * h2
||[B2] LDH .D1 *A8++[2],B6 ;** h1 = h[i+1]
||[B2] LDH .D2 *B4++[2],A1 ;** h0 = h[i]

  ADD .L2 B7,B9,B9 ; sum1 += x2 * h1
|| ADD .L1 A5,A9,A9 ; sum0 += x2 * h2
|| MPY .M1X B5,A1,A0 ;* x0 * h0
|| MPY .M2X A0,B6,B6 ;* x1 * h1
||[B2] LDH .D1 *A4++[2],A5 ;** x3 = x[j+i+3]
||[B2] LDH .D2 *B1++[2],B5 ;** x0 = x[j+i+4]

  ADD .L2X A7,B9,B9 ; sum1 += x3 * h2
|| ADD .L1X B8,A9,A9 ; sum0 += x3 * h3
||[B2] B .S1 LOOP ;* branch to loop
|| MPY .M2 B0,B6,B7 ;* x2 * h1
|| MPY .M1 A0,A1,A1 ;* x1 * h0
||[B2] LDH .D2 *B4++[2],A7 ;** h2 = h[i+2]
||[B2] LDH .D1 *A8++[2],B8 ;** h3 = h[i+3]
||[B2] SUB .S2 B2,1,B2 ;** decrement loop counter

  ADD .L2 B7,B9,B9 ; sum1 += x0 * h3
|| ADD .L1 A0,A9,A9 ;* sum0 += x0 * h0
|| MPY .M2X A5,B8,B8 ;* x3 * h3
|| MPY .M1X B0,A7,A5 ;* x2 * h2
||[B2] LDH .D2 *B1++[2],B0 ;*** x2 = x[j+i+2]
||[B2] LDH .D1 *A4++[2],A0 ;*** x1 = x[j+i+1]

; inner loop branch occurs here

  [A2] B .S2 OUTLOOP ; branch to outer loop
|| SUB .L1 A4,A3,A4 ; reset x pointer to x[j]
|| SUB .L2 B4,B10,B4 ; reset h pointer to h[0]
|| SUB .S1 A9,A0,A9 ; sum0 –= x0*h0 (eliminate add)

SHR .S1 A9,15,A9 ; sum0 >> 15
|| SHR .S2 B9,15,B9 ; sum1 >> 15

STH .D1 A9,*A6++ ; y[j] = sum0 >> 15

STH .D1 B9,*A6++ ; y[j+1] = sum1 >> 15

NOP 2 ; branch delay slots
; outer loop branch occurs here
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6.13 Software Pipelining the Outer Loop

In previous examples, software pipelining has always affected the inner loop.
However, software pipelining works equally well with the outer loop in a nested
loop.

6.13.1 Unrolled FIR Filter C Code

Example 6–70 shows the FIR filter C code after unrolling the inner loop (identi-
cal to Example 6–66 on page 6-122).

Example 6–70. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])
{

int i, j, sum0, sum1;
short x0,x1,x2,x3,h0,h1,h2,h3;

for (j = 0; j < 100; j+=2) {
sum0 = 0;
sum1 = 0;
x0 = x[j];
for (i = 0; i < 32; i+=4){

x1 = x[j+i+1];
h0 = h[i];
sum0 += x0 * h0;
sum1 += x1 * h0;
x2 = x[j+i+2];
h1 = h[i+1];
sum0 += x1 * h1;
sum1 += x2 * h1;
x3 = x[j+i+3];
h2 = h[i+2];
sum0 += x2 * h2;
sum1 += x3 * h2;
x0 = x[j+i+4];
h3 = h[i+3];
sum0 += x3 * h3;
sum1 += x0 * h3;
}

y[j] = sum0 >> 15;
y[j+1] = sum1 >> 15;

}
}
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6.13.2 Making the Outer Loop Parallel With the Inner Loop Epilog and Prolog

The final assembly code for the FIR filter with redundant load elimination and
no memory hits (shown in Example 6–69 on page 6-129) contained 16 cycles
of overhead to call the inner loop every time: ten cycles for the loop prolog and
six cycles for the outer loop instructions and branching to the outer loop.

Most of this overhead can be reduced as follows:

� Put the outer loop and branch instructions in parallel with the prolog.
� Create an epilog to the inner loop.
� Put some outer loop instructions in parallel with the inner-loop epilog.

6.13.3 Final Assembly

Example 6–71 shows the final assembly for the FIR filter with a software-pipe-
lined outer loop. Below the inner loop (starting on page 6-134), each instruc-
tion is marked in the comments with an e, p, or o for instructions relating to epi-
log, prolog, or outer loop, respectively.

The inner loop is now only run seven times, because the eighth iteration is
done in the epilog in parallel with the prolog of the next inner loop and the outer
loop instructions.
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Example 6–71. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined

MVK .S1 50,A2 ; set up outer loop counter

STW .D2 B11,*B15–– ; push register
|| MVK .S1 74,A3 ; used to rst x ptr outer loop
|| MVK .S2 72,B10 ; used to rst h ptr outer loop
|| ADD .L2X A6,2,B11 ; set up pointer to y[1]

LDH .D1 *A4++,B8 ; x0 = x[j]
|| ADD .L2X A4,4,B1 ; set up pointer to x[j+2]
|| ADD .L1X B4,2,A8 ; set up pointer to h[1]
|| MVK .S2 8,B2 ; set up inner loop counter
||[A2] SUB .S1 A2,1,A2 ; decrement outer loop counter

  LDH .D2 *B1++[2],B0 ; x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ; x1 = x[j+i+1]
|| ZERO .L1 A9 ; zero out sum0
|| ZERO .L2 B9 ; zero out sum1

  LDH .D1 *A8++[2],B6 ; h1 = h[i+1]
|| LDH .D2 *B4++[2],A1 ; h0 = h[i]

  LDH .D1 *A4++[2],A5 ; x3 = x[j+i+3]
|| LDH .D2 *B1++[2],B5 ; x0 = x[j+i+4]

OUTLOOP:
  LDH .D2 *B4++[2],A7 ; h2 = h[i+2]
|| LDH .D1 *A8++[2],B8 ; h3 = h[i+3]
||[B2] SUB .S2 B2,2,B2 ; decrement loop counter

  LDH .D2 *B1++[2],B0 ;* x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ;* x1 = x[j+i+1]

LDH .D1 *A8++[2],B6 ;* h1 = h[i+1]
|| LDH .D2 *B4++[2],A1 ;* h0 = h[i]

  MPY .M1X B8,A1,A0 ; x0 * h0
|| MPY .M2X A0,B6,B6 ; x1 * h1
|| LDH .D1 *A4++[2],A5 ;* x3 = x[j+i+3]
|| LDH .D2 *B1++[2],B5 ;* x0 = x[j+i+4]

  [B2] B .S1 LOOP ; branch to loop
|| MPY .M2 B0,B6,B7 ; x2 * h1
|| MPY .M1 A0,A1,A1 ; x1 * h0
|| LDH .D2 *B4++[2],A7 ;* h2 = h[i+2]
|| LDH .D1 *A8++[2],B8 ;* h3 = h[i+3]
||[B2] SUB .S2 B2,1,B2 ;* decrement loop counter
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Example 6–71. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

  ADD .L1 A0,A9,A9 ; sum0 += x0 * h0
|| MPY .M2X A5,B8,B8 ; x3 * h3
|| MPY .M1X B0,A7,A5 ; x2 * h2
|| LDH .D2 *B1++[2],B0 ;** x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ;** x1 = x[j+i+1]

LOOP:
  ADD .L2X A1,B9,B9 ; sum1 += x1 * h0
|| ADD .L1X B6,A9,A9 ; sum0 += x1 * h1
|| MPY .M2 B5,B8,B7 ; x0 * h3
|| MPY .M1 A5,A7,A7 ; x3 * h2
|| LDH .D1 *A8++[2],B6 ;** h1 = h[i+1]
|| LDH .D2 *B4++[2],A1 ;** h0 = h[i]

  ADD .L2 B7,B9,B9 ; sum1 += x2 * h1
|| ADD .L1 A5,A9,A9 ; sum0 += x2 * h2
|| MPY .M1X B5,A1,A0 ;* x0 * h0
|| MPY .M2X A0,B6,B6 ;* x1 * h1
|| LDH .D1 *A4++[2],A5 ;** x3 = x[j+i+3]
|| LDH .D2 *B1++[2],B5 ;** x0 = x[j+i+4]

  ADD .L2X A7,B9,B9 ; sum1 += x3 * h2
|| ADD .L1X B8,A9,A9 ; sum0 += x3 * h3
||[B2] B .S1 LOOP ;* branch to loop
|| MPY .M2 B0,B6,B7 ;* x2 * h1
|| MPY .M1 A0,A1,A1 ;* x1 * h0
|| LDH .D2 *B4++[2],A7 ;** h2 = h[i+2]
|| LDH .D1 *A8++[2],B8 ;** h3 = h[i+3]
||[B2] SUB .S2 B2,1,B2 ;** decrement loop counter

  ADD .L2 B7,B9,B9 ; sum1 += x0 * h3
|| ADD .L1 A0,A9,A9 ;* sum0 += x0 * h0
|| MPY .M2X A5,B8,B8 ;* x3 * h3
|| MPY .M1X B0,A7,A5 ;* x2 * h2
|| LDH .D2 *B1++[2],B0 ;*** x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ;*** x1 = x[j+i+1]

; inner loop branch occurs here

  ADD .L2X A1,B9,B9 ;e sum1 += x1 * h0
|| ADD .L1X B6,A9,A9 ;e sum0 += x1 * h1
|| MPY .M2 B5,B8,B7 ;e x0 * h3
|| MPY .M1 A5,A7,A7 ;e x3 * h2
|| SUB .D1 A4,A3,A4 ;o reset x pointer to x[j]
|| SUB .D2 B4,B10,B4 ;o reset h pointer to h[0]
||[A2] B .S1 OUTLOOP ;o branch to outer loop
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Example 6–71. Final Assembly Code for FIR Filter With Redundant Load Elimination and
No Memory Hits With Outer Loop Software-Pipelined (Continued)

  ADD .D2 B7,B9,B9 ;e sum1 += x2 * h1
|| ADD .L1 A5,A9,A9 ;e sum0 += x2 * h2
|| LDH .D1 *A4++,B8 ;p x0 = x[j]
|| ADD .L2X A4,4,B1 ;o set up pointer to x[j+2]
|| ADD .S1X B4,2,A8 ;o set up pointer to h[1]
|| MVK .S2 8,B2 ;o set up inner loop counter

  ADD .L2X A7,B9,B9 ;e sum1 += x3 * h2
|| ADD .L1X B8,A9,A9 ;e sum0 += x3 * h3
||  LDH .D2 *B1++[2],B0 ;p x2 = x[j+i+2]
|| LDH .D1 *A4++[2],A0 ;p x1 = x[j+i+1]
||[A2] SUB .S1 A2,1,A2 ;o decrement outer loop counter

  ADD .L2 B7,B9,B9 ;e sum1 += x0 * h3
|| SHR .S1 A9,15,A9 ;e sum0 >> 15
|| LDH .D1 *A8++[2],B6 ;p h1 = h[i+1]
|| LDH .D2 *B4++[2],A1 ;p h0 = h[i]

SHR .S2 B9,15,B9 ;e sum1 >> 15
|| LDH .D1 *A4++[2],A5 ;p x3 = x[j+i+3]
|| LDH .D2 *B1++[2],B5 ;p x0 = x[j+i+4]

STH .D1 A9,*A6++[2] ;e y[j] = sum0 >> 15
|| STH .D2 B9,*B11++[2] ;e y[j+1] = sum1 >> 15
|| ZERO .S1 A9 ;o zero out sum0
|| ZERO .S2 B9 ;o zero out sum1

; outer loop branch occurs here

6.13.4 Comparing Performance

The improved cycle count for this loop is 2006 cycles: 50 ((7�4) + 6 + 6) + 6. The
outer-loop overhead for this loop has been reduced from 16 to 8 (6 + 6 – 4);
the –4 represents one iteration less for the inner-loop iteration (seven instead
of eight).

Table 6–26. Comparison of FIR Filter Code

Code Example Cycles Cycle Count

Example 6–64 FIR with redundant load elimination 50 (16 � 2 + 9 + 6) + 2 2352

Example 6–69 FIR with redundant load elimination and no memory
hits

50 (8 � 4 + 10 + 6) + 2 2402

Example 6–71 FIR with redundant load elimination and no memory
hits with outer loop software-pipelined

50 (7 � 4 + 6 + 6) + 6 2006
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6.14 Outer Loop Conditionally Executed With Inner Loop

Software pipelining the outer loop improved the outer loop overhead in the
previous example from 16 cycles to 8 cycles. Executing the outer loop condi-
tionally and in parallel with the inner loop eliminates the overhead entirely.

6.14.1 Unrolled FIR Filter C Code

Example 6–72 shows the same unrolled FIR filter C code that used in the
previous example.

Example 6–72. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])
{

int i, j, sum0, sum1;
short x0,x1,x2,x3,h0,h1,h2,h3;

for (j = 0; j < 100; j+=2) {
sum0 = 0;
sum1 = 0;
x0 = x[j];
for (i = 0; i < 32; i+=4){

x1 = x[j+i+1];
h0 = h[i];
sum0 += x0 * h0;
sum1 += x1 * h0;
x2 = x[j+i+2];
h1 = h[i+1];
sum0 += x1 * h1;
sum1 += x2 * h1;
x3 = x[j+i+3];
h2 = h[i+2];
sum0 += x2 * h2;
sum1 += x3 * h2;
x0 = x[j+i+4];
h3 = h[i+3];
sum0 += x3 * h3;
sum1 += x0 * h3;
}

y[j] = sum0 >> 15;
y[j+1] = sum1 >> 15;

}
}
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6.14.2 Translating C Code to Linear Assembly (Inner Loop)

Example 6–73 shows a list of linear assembly for the inner loop of the FIR filter
C code (identical to Example 6–67 on page 6-123).

Example 6–73. Linear Assembly for Unrolled FIR Inner Loop

LDH *x++,x1 ; x1 = x[j+i+1]
LDH *h++,h0 ; h0 = h[i]
MPY x0,h0,p00 ; x0 * h0
MPY x1,h0,p10 ; x1 * h0
ADD p00,sum0,sum0 ; sum0 += x0 * h0
ADD p10,sum1,sum1 ; sum1 += x1 * h0

LDH *x++,x2 ; x2 = x[j+i+2]
LDH *h++,h1 ; h1 = h[i+1]
MPY x1,h1,p01 ; x1 * h1
MPY x2,h1,p11 ; x2 * h1
ADD p01,sum0,sum0 ; sum0 += x1 * h1
ADD p11,sum1,sum1 ; sum1 += x2 * h1

LDH *x++,x3 ; x3 = x[j+i+3]
LDH *h++,h2 ; h2 = h[i+2]
MPY x2,h2,p02 ; x2 * h2
MPY x3,h2,p12 ; x3 * h2
ADD p02,sum0,sum0 ; sum0 += x2 * h2
ADD p12,sum1,sum1 ; sum1 += x3 * h2

LDH *x++,x0 ; x0 = x[j+i+4]
LDH *h++,h3 ; h3 = h[i+3]
MPY x3,h3,p03 ; x3 * h3
MPY x0,h3,p13 ; x0 * h3
ADD p03,sum0,sum0 ; sum0 += x3 * h3
ADD p13,sum1,sum1 ; sum1 += x0 * h3

 [cntr] SUB cntr,1,cntr ; decrement loop counter
 [cntr] B LOOP ; branch to loop
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6.14.3 Translating C Code to Linear Assembly (Outer Loop)

Example 6–74 shows the instructions that execute all of the outer loop func-
tions. All of these instructions are conditional on inner loop counters. Two
different counters are needed, because they must decrement to 0 on different
iterations. 

� The resetting of the x and h pointers is conditional on the pointer reset
counter, prc.

� The shifting and storing of the even and odd y elements are conditional on
the store counter, sctr.

When these counters are 0, all of the instructions that are conditional on that
value execute.

� The MVK instruction resets the pointers to 8 because after every eight
iterations of the loop, a new inner loop is completed (8 � 4 elements are
processed).

� The pointer reset counter becomes 0 first to reset the load pointers, then
the store counter becomes 0 to shift and store the result.

Example 6–74. Linear Assembly for FIR Outer Loop

 [sctr] SUB sctr,1,sctr ; dec store lp cntr
[!sctr] SHR sum07,15,y0 ; (sum0 >> 15)
[!sctr] SHR sum17,15,y1 ; (sum1 >> 15)
[!sctr] STH y0,*y++[2] ; y[j] = (sum0 >> 15)
[!sctr] STH y1,*y_1++[2] ; y[j+1] = (sum1 >> 15)
[!sctr] MVK 4,sctr ; reset store lp cntr
 [pctr] SUB pctr,1,pctr ; dec pointer reset lp cntr
[!pctr] SUB x,rstx2,x ; reset x ptr
[!pctr] SUB x_1,rstx1,x_1 ; reset x_1 ptr
[!pctr] SUB h,rsth1,h ; reset h ptr
[!pctr] SUB h_1,rsth2,h_1 ; reset h_1 ptr
[!pctr] MVK 4,pctr ; reset pointer reset lp cntr

6.14.4 Unrolled FIR Filter C Code

The total number of instructions to execute both the inner and outer loops is
38 (26 for the inner loop and 12 for the outer loop). A 4-cycle loop is no longer
possible. To avoid slowing down the throughput of the inner loop to reduce the
outer-loop overhead, you must unroll the FIR filter again.

Example 6–75 shows the C code for the FIR filter, which operates on eight
elements every inner loop. Two outer loops are also being processed together,
as in Example 6–72 on page 6-136.
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Example 6–75. Unrolled FIR Filter C Code

void fir(short x[], short h[], short y[])
{

int i, j, sum0, sum1;
short x0,x1,x2,x3,x4,x5,x6,x7,h0,h1,h2,h3,h4,h5,h6,h7;

for (j = 0; j < 100; j+=2) {
sum0 = 0;
sum1 = 0;
x0 = x[j];
for (i = 0; i < 32; i+=8){

x1 = x[j+i+1];
h0 = h[i];
sum0 += x0 * h0;
sum1 += x1 * h0;
x2 = x[j+i+2];
h1 = h[i+1];
sum0 += x1 * h1;
sum1 += x2 * h1;
x3 = x[j+i+3];
h2 = h[i+2];
sum0 += x2 * h2;
sum1 += x3 * h2;
x4 = x[j+i+4];
h3 = h[i+3];
sum0 += x3 * h3;
sum1 += x4 * h3;
x5 = x[j+i+5];
h4 = h[i+4];
sum0 += x4 * h4;
sum1 += x5 * h4;
x6 = x[j+i+6];
h5 = h[i+5];
sum0 += x5 * h5;
sum1 += x6 * h5;
x7 = x[j+i+7];
h6 = h[i+6];
sum0 += x6 * h6;
sum1 += x7 * h6;
x0 = x[j+i+8];
h7 = h[i+7];
sum0 += x7 * h7;
sum1 += x0 * h7;
}

y[j] = sum0 >> 15;
y[j+1] = sum1 >> 15;

}
}
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6.14.5 Translating C Code to Linear Assembly (Inner Loop)

Example 6–76 shows the instructions that perform the inner and outer loops
of the FIR filter. These instructions reflect the following modifications:

� LDWs are used instead of LDHs to reduce the number of loads in the loop.

� The reset pointer instructions immediately follow the LDW instructions.

� The first ADD instructions for sum0 and sum1 are conditional on the same
value as the store counter, because when sctr is 0, the end of one inner
loop has been reached and the first ADD, which adds the previous sum07
to p00, must not be executed.

� The first ADD for sum0 writes to the same register as the first MPY p00.
The second ADD reads p00 and p01. At the beginning of each inner loop,
the first ADD is not performed, so the second ADD correctly reads the
results of the first two MPYs (p01 and p00) and adds them together. For
other iterations of the inner loop, the first ADD executes, and the second
ADD sums the second MPY result (p01) with the running accumulator. The
same is true for the first and second ADDs of sum1.
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Example 6–76. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop

LDW *h++[2],h01 ; h[i+0] & h[i+1]
LDW *h_1++[2],h23 ; h[i+2] & h[i+3]
LDW *h++[2],h45 ; h[i+4] & h[i+5]
LDW .*h_1++[2],h67 ; h[i+6] & h[i+7]

LDW *x++[2],x01 ; x[j+i+0] & x[j+i+1]
LDW *x_1++[2],x23 ; x[j+i+2] & x[j+i+3]
LDW *x++[2],x45 ; x[j+i+4] & x[j+i+5]
LDW *x_1++[2],x67 ; x[j+i+6] & x[j+i+7]
LDH *x,x8 ; x[j+i+8]

 [sctr] SUB sctr,1,sctr ; dec store lp cntr
[!sctr] SHR sum07,15,y0 ; (sum0 >> 15)
[!sctr] SHR sum17,15,y1 ; (sum1 >> 15)
[!sctr] STH y0,*y++[2] ; y[j] = (sum0 >> 15)
[!sctr] STH y1,*y_1++[2] ; y[j+1] = (sum1 >> 15)

MV x01,x01b ; move to other reg file
MPYLH h01,x01b,p10 ; p10 = h[i+0]*x[j+i+1]

[sctr] ADD p10,sum17,p10 ; sum1(p10) = p10 + sum1

MPYHL h01,x23,p11 ; p11 = h[i+1]*x[j+i+2]
ADD p11,p10,sum11 ; sum1 += p11

MPYLH h23,x23,p12 ; p12 = h[i+2]*x[j+i+3]
ADD p12,sum11,sum12 ; sum1 +=  p12

MPYHL h23,x45,p13 ; p13 = h[i+3]*x[j+i+4]
ADD p13,sum12,sum13 ; sum1 += p13

MPYLH h45,x45,p14 ; p14 = h[i+4]*x[j+i+5]
ADD p14,sum13,sum14 ; sum1 += p14

MPYHL h45,x67,p15 ; p15 = h[i+5]*x[j+i+6]
ADD p15,sum14,sum15 ; sum1 += p15

MPYLH h67,x67,p16 ; p16 = h[i+6]*x[j+i+7]
ADD p16,sum15,sum16 ; sum1 += p16

MPYHL h67,x8,p17 ; p17 = h[i+7]*x[j+i+8]
ADD p17,sum16,sum17 ; sum1 += p17

MPY h01,x01,p00 ; p00 = h[i+0]*x[j+i+0]
[sctr] ADD p00,sum07,p00 ; sum0(p00) = p00 + sum0

MPYH h01,x01,p01 ; p01 = h[i+1]*x[j+i+1]
 ADD p01,p00,sum01 ; sum0 += p01
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Example 6–76. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (Continued)

MPY h23,x23,p02 ; p02 = h[i+2]*x[j+i+2]
ADD p02,sum01,sum02 ; sum0 += p02

MPYH h23,x23,p03 ; p03 = h[i+3]*x[j+i+3]
ADD p03,sum02,sum03 ; sum0 += p03

MPY h45,x45,p04 ; p04 = h[i+4]*x[j+i+4]
ADD p04,sum03,sum04 ; sum0 += p04

MPYH h45,x45,p05 ; p05 = h[i+5]*x[j+i+5]
ADD p05,sum04,sum05 ; sum0 += p05

MPY h67,x67,p06 ; p06 = h[i+6]*x[j+i+6]
ADD p06,sum05,sum06 ; sum0 += p06

MPYH h67,x67,p07 ; p07 = h[i+7]*x[j+i+7]
ADD p07,sum06,sum07 ; sum0 += p07

[!sctr] MVK 4,sctr ; reset store lp cntr

 [pctr] SUB pctr,1,pctr ; dec pointer reset lp cntr
[!pctr] SUB x,rstx2,x ; reset x ptr
[!pctr] SUB x_1,rstx1,x_1 ; reset x_1 ptr
[!pctr] SUB h,rsth1,h ; reset h ptr
[!pctr] SUB h_1,rsth2,h_1 ; reset h_1 ptr
[!pctr] MVK 4,pctr ; reset pointer reset lp cntr

 [octr] SUB octr,1,octr ; dec outer lp cntr
 [octr] B LOOP ; Branch outer loop

6.14.6 Translating C Code to Linear Assembly (Inner Loop and Outer Loop)

Example 6–77 shows the linear assembly with functional units assigned. (As
in Example 6–68 on page 6-125, symbolic names now have an A or B in front
of them to signify the register file where they reside.) Although this allocation
is one of many possibilities, one goal is to keep the 1X and 2X paths to a
minimum. Even with this goal, you have five 2X paths and seven 1X paths.

One requirement that was assumed when the functional units were chosen
was that all the sum0 values reside on the same side (A in this case) and all
the sum1 values reside on the other side (B). Because you are scheduling
eight accumulates for both sum0 and sum1 in an 8-cycle loop, each ADD must
be scheduled immediately following the previous ADD. Therefore, it is undesir-
able for any sum0 ADDs to use the same functional units as sum1 ADDs.

One MV instruction was added to get x01 on the B side for the MPYLH p10
instruction.
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Example 6–77. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (With Functional Units)

.global _fir

_fir: .cproc x, h, y

.reg x_1, h_1, y_1, octr, pctr, sctr

.reg sum01, sum02, sum03, sum04, sum05, sum06, sum07

.reg sum11, sum12, sum13, sum14, sum15, sum16, sum17

.reg p00, p01, p02, p03, p04, p05, p06, p07

.reg p10, p11, p12, p13, p14, p15, p16, p17

.reg x01b, x01, x23, x45, x67, x8, h01, h23, h45, h67

.reg y0, y1, rstx1, rstx2, rsth1, rsth2
 

ADD x,4,x_1 ; point to x[2]
ADD h,4,h_1 ; point to h[2]
ADD y,2,y_1 ; point to y[1]
MVK 60,rstx1 ; used to rst x pointer each outer loop
MVK 60,rstx2 ; used to rst x pointer each outer loop
MVK 64,rsth1 ; used to rst h pointer each outer loop
MVK 64,rsth2 ; used to rst h pointer each outer loop
MVK 201,octr ; loop ctr = 201 = (100/2) * (32/8) + 1
MVK 4,pctr ; pointer reset lp cntr = 32/8
MVK 5,sctr ; reset store lp cntr = 32/8 + 1
ZERO sum07 ; sum07 = 0
ZERO sum17 ; sum17 = 0

.mptr x,   x+0

.mptr x_1, x+4

.mptr h,   h+0

.mptr h_1, h+4

LOOP: .trip 8

LDW .D1T1 *h++[2],h01 ; h[i+0] & h[i+1]
LDW .D2T2 *h_1++[2],h23; h[i+2] & h[i+3]
LDW .D1T1 *h++[2],h45 ; h[i+4] & h[i+5]
LDW .D2T2 *h_1++[2],h67; h[i+6] & h[i+7]

LDW .D2T1 *x++[2],x01 ; x[j+i+0] & x[j+i+1]
LDW .D1T2 *x_1++[2],x23; x[j+i+2] & x[j+i+3]
LDW .D2T1 *x++[2],x45 ; x[j+i+4] & x[j+i+5]
LDW .D1T2 *x_1++[2],x67; x[j+i+6] & x[j+i+7]
LDH .D2T1 *x,x8 ; x[j+i+8]

 [sctr] SUB .S1 sctr,1,sctr ; dec store lp cntr
[!sctr] SHR .S1 sum07,15,y0 ; (sum0 >> 15)
[!sctr] SHR .S2 sum17,15,y1 ; (sum1 >> 15)
[!sctr] STH .D1 y0,*y++[2] ; y[j] = (sum0 >> 15)
[!sctr] STH .D2 y1,*y_1++[2] ; y[j+1] = (sum1 >> 15)
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Example 6–77. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (With Functional Units) (Continued)

MV .L2X x01,x01b ; move to other reg file
MPYLH .M2X h01,x01b,p10 ; p10 = h[i+0]*x[j+i+1]

[sctr] ADD .L2 p10,sum17,p10 ; sum1(p10) = p10 + sum1

MPYHL .M1X h01,x23,p11 ; p11 = h[i+1]*x[j+i+2]
ADD .L2X p11,p10,sum11 ; sum1 += p11

MPYLH .M2 h23,x23,p12 ; p12 = h[i+2]*x[j+i+3]
ADD .L2 p12,sum11,sum12 ; sum1 +=  p12

MPYHL .M1X h23,x45,p13 ; p13 = h[i+3]*x[j+i+4]
ADD .L2X p13,sum12,sum13 ; sum1 += p13

MPYLH .M1 h45,x45,p14 ; p14 = h[i+4]*x[j+i+5]
ADD .L2X p14,sum13,sum14 ; sum1 += p14

MPYHL .M2X h45,x67,p15 ; p15 = h[i+5]*x[j+i+6]
ADD .S2 p15,sum14,sum15 ; sum1 += p15

MPYLH .M2 h67,x67,p16 ; p16 = h[i+6]*x[j+i+7]
ADD .L2 p16,sum15,sum16 ; sum1 += p16

MPYHL .M1X h67,x8,p17 ; p17 = h[i+7]*x[j+i+8]
ADD .L2X p17,sum16,sum17 ; sum1 += p17

MPY .M1 h01,x01,p00 ; p00 = h[i+0]*x[j+i+0]
[sctr] ADD .L1 p00,sum07,p00 ; sum0(p00) = p00 + sum0

MPYH .M1 h01,x01,p01 ; p01 = h[i+1]*x[j+i+1]
ADD .L1 p01,p00,sum01 ; sum0 += p01

MPY .M2 h23,x23,p02 ; p02 = h[i+2]*x[j+i+2]
ADD .L1X p02,sum01,sum02 ; sum0 += p02

MPYH .M2 h23,x23,p03 ; p03 = h[i+3]*x[j+i+3]
ADD .L1X p03,sum02,sum03 ; sum0 += p03

MPY .M1 h45,x45,p04 ; p04 = h[i+4]*x[j+i+4]
ADD .L1 p04,sum03,sum04 ; sum0 += p04

MPYH .M1 h45,x45,p05 ; p05 = h[i+5]*x[j+i+5]
ADD .L1 p05,sum04,sum05 ; sum0 += p05
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Example 6–77. Linear Assembly for FIR With Outer Loop Conditionally Executed 
With Inner Loop (With Functional Units)(Continued)

MPY .M2 h67,x67,p06 ; p06 = h[i+6]*x[j+i+6]
ADD .L1X p06,sum05,sum06 ; sum0 += p06

MPYH .M2 h67,x67,p07 ; p07 = h[i+7]*x[j+i+7]
ADD .L1X p07,sum06,sum07 ; sum0 += p07

[!sctr] MVK .S1 4,sctr ; reset store lp cntr

 [pctr] SUB .S1 pctr,1,pctr ; dec pointer reset lp cntr
[!pctr] SUB .S2 x,rstx2,x ; reset x ptr
[!pctr] SUB .S1 x_1,rstx1,x_1 ; reset x_1 ptr
[!pctr] SUB .S1 h,rsth1,h ; reset h ptr
[!pctr] SUB .S2 h_1,rsth2,h_1 ; reset h_1 ptr
[!pctr] MVK .S1 4,pctr ; reset pointer reset lp cntr

 [octr] SUB .S2 octr,1,octr ; dec outer lp cntr
 [octr] B .S2 LOOP ; Branch outer loop

.endproc
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6.14.7 Determining the Minimum Iteration Interval

Based on Table 6–27, the minimum iteration interval is 8. An iteration interval
of 8 means that two multiply-accumulates per cycle are still executing.

Table 6–27. Resource Table for FIR Filter Code

(a) A side (b) B side

Unit(s) Total/Unit Unit(s) Total/Unit

.M1 8 .M2 8

.S1 7 .S2 6

.D1 5 .D2 6

.L1 8 .L2 8

Total non-.M units 20 Total non-.M units 20

1X paths 7 2X paths 5

6.14.8 Final Assembly

Example 6–78 shows the final assembly for the FIR filter with the outer loop
conditionally executing in parallel with the inner loop.
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Example 6–78. Final Assembly Code for FIR Filter

MV .L1X B4,A0 ; point to h[0] & h[1]
|| ADD .D2 B4,4,B2 ; point to h[2] & h[3]
|| MV .L2X A4,B1 ; point to x[j] & x[j+1]
|| ADD .D1 A4,4,A4 ; point to x[j+2] & x[j+3]
|| MVK .S2 200,B0 ; set lp ctr ((32/8)*(100/2))

  LDW .D1 *A4++[2],B9 ; x[j+i+2] & x[j+i+3]
|| LDW .D2 *B1++[2],A10 ; x[j+i+0] & x[j+i+1]
|| MVK .S1 4,A1 ; set pointer reset lp cntr

  LDW .D2 *B2++[2],B7 ; h[i+2] & h[i+3]
|| LDW .D1 *A0++[2],A8 ; h[i+0] & h[i+1]
|| MVK .S1 60,A3 ; used to reset x ptr (16*4–4)
|| MVK .S2 60,B14 ; used to reset x ptr (16*4–4)

  LDW .D2 *B1++[2],A11 ; x[j+i+4] & x[j+i+5]
|| LDW .D1 *A4++[2],B10 ; x[j+i+6] & x[j+i+7]
||[A1] SUB .L1 A1,1,A1 ; dec pointer reset lp cntr
|| MVK .S1 64,A5 ; used to reset h ptr (16*4)
|| MVK .S2 64,B5 ; used to reset h ptr (16*4)
|| ADD .L2X A6,2,B6 ; point to y[j+1]

  LDW .D1 *A0++[2],A9 ; h[i+4] & h[i+5]
|| LDW .D2 *B2++[2],B8 ; h[i+6] & h[i+7]
||[!A1] SUB .S1 A4,A3,A4 ; reset x ptr

  [!A1] SUB .S2 B1,B14,B1 ; reset x ptr
||[!A1] SUB .S1 A0,A5,A0 ; reset h ptr
|| LDH .D2 *B1,A8 ; x[j+i+8]

  ADD .S2X A10,0,B8 ; move to other reg file
|| MVK .S1 5,A2 ; set store lp cntr

  MPYLH .M2X A8,B8,B4 ; p10 = h[i+0]*x[j+i+1]
||[!A1] SUB .S2 B2,B5,B2 ; reset h ptr
|| MPYHL .M1X A8,B9,A14 ; p11 = h[i+1]*x[j+i+2]

  MPY .M1 A8,A10,A7 ; p00 = h[i+0]*x[j+i+0]
|| MPYLH .M2 B7,B9,B13 ; p12 = h[i+2]*x[j+i+3]
||[A2] SUB .S1 A2,1,A2 ; dec store lp cntr
|| ZERO .L2 B11 ; zero out initial accumulator

  [!A2] SHR .S2 B11,15,B11 ; (Bsum1 >> 15)
|| MPY .M2 B7,B9,B9 ; p02 = h[i+2]*x[j+i+2]
|| MPYH .M1 A8,A10,A10 ; p01 = h[i+1]*x[j+i+1]
||[A2] ADD .L2 B4,B11,B4 ; sum1(p10) = p10 + sum1
|| LDW .D1 *A4++[2],B9 ;* x[j+i+2] & x[j+i+3]
|| LDW .D2 *B1++[2],A10 ;* x[j+i+0] & x[j+i+1]
|| ZERO .L1 A10 ; zero out initial accumulator
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Example 6–78. Final Assembly Code for FIR Filter (Continued)

LOOP:
  [!A2] SHR .S1 A10,15,A12 ; (Asum0 >> 15)
||[B0] SUB .S2 B0,1,B0 ; dec outer lp cntr
|| MPYH .M2 B7,B9,B13 ; p03 = h[i+3]*x[j+i+3]
||[A2] ADD .L1 A7,A10,A7 ; sum0(p00) = p00 + sum0
|| MPYHL .M1X B7,A11,A10 ; p13 = h[i+3]*x[j+i+4]
|| ADD .L2X A14,B4,B7 ; sum1 += p11
|| LDW .D2 *B2++[2],B7 ;* h[i+2] & h[i+3]
|| LDW .D1 *A0++[2],A8 ;* h[i+0] & h[i+1]

  ADD .L1 A10,A7,A13 ; sum0 += p01
|| MPYHL .M2X A9,B10,B12 ; p15 = h[i+5]*x[j+i+6]
|| MPYLH .M1 A9,A11,A10 ; p14 = h[i+4]*x[j+i+5]
|| ADD .L2 B13,B7,B7 ; sum1 +=  p12
|| LDW .D2 *B1++[2],A11 ;* x[j+i+4] & x[j+i+5]
|| LDW .D1 *A4++[2],B10 ;* x[j+i+6] & x[j+i+7]
||[A1] SUB .S1 A1,1,A1 ;* dec pointer reset lp cntr

  [B0] B .S2 LOOP ; Branch outer loop
|| MPY .M1 A9,A11,A11 ; p04 = h[i+4]*x[j+i+4]
|| ADD .L1X B9,A13,A13 ; sum0 += p02
|| MPYLH .M2 B8,B10,B13 ; p16 = h[i+6]*x[j+i+7]
|| ADD .L2X A10,B7,B7 ; sum1 += p13
|| LDW .D1 *A0++[2],A9 ;* h[i+4] & h[i+5]
|| LDW .D2 *B2++[2],B8 ;* h[i+6] & h[i+7]
||[!A1] SUB .S1 A4,A3,A4 ;* reset x ptr

  MPY .M2 B8,B10,B11 ; p06 = h[i+6]*x[j+i+6]
|| MPYH .M1 A9,A11,A11 ; p05 = h[i+5]*x[j+i+5]
|| ADD .L1X B13,A13,A9 ; sum0 += p03
|| ADD .L2X A10,B7,B7 ; sum1 += p14
||[!A1] SUB .S2 B1,B14,B1 ;* reset x ptr
||[!A1] SUB .S1 A0,A5,A0 ;* reset h ptr
|| LDH .D2 *B1,A8 ;* x[j+i+8]

  [!A2] MVK .S1 4,A2 ; reset store lp cntr
|| MPYH .M2 B8,B10,B13 ; p07 = h[i+7]*x[j+i+7]
|| ADD .L1 A11,A9,A9 ; sum0 += p04
|| MPYHL .M1X B8,A8,A9 ; p17 = h[i+7]*x[j+i+8]
|| ADD .S2 B12,B7,B10 ; sum1 += p15
||[!A2] STH .D2 B11,*B6++[2] ; y[j+1] = (Bsum1 >> 15)
||[!A2] STH .D1 A12,*A6++[2] ; y[j] = (Asum0 >> 15)
|| ADD .L2X A10,0,B8 ;* move to other reg file

  ADD .L1 A11,A9,A12 ; sum0 += p05
|| ADD .L2 B13,B10,B8 ; sum1 += p16
|| MPYLH .M2X A8,B8,B4 ;* p10 = h[i+0]*x[j+i+1]
||[!A1] MVK .S1 4,A1 ;* reset pointer reset lp cntr
||[!A1] SUB .S2 B2,B5,B2 ;* reset h ptr
|| MPYHL .M1X A8,B9,A14 ;* p11 = h[i+1]*x[j+i+2]
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Example 6–78. Final Assembly Code for FIR Filter (Continued)

  ADD .L2X A9,B8,B11 ; sum1 += p17
|| ADD .L1X B11,A12,A12 ; sum0 += p06
|| MPY .M1 A8,A10,A7 ;* p00 = h[i+0]*x[j+i+0]
|| MPYLH .M2 B7,B9,B13 ;* p12 = h[i+2]*x[j+i+3]
||[A2] SUB .S1 A2,1,A2 ;* dec store lp cntr

  ADD .L1X B13,A12,A10 ; sum0 += p07
||[!A2] SHR .S2 B11,15,B11 ;* (Bsum1 >> 15)
|| MPY .M2 B7,B9,B9 ;* p02 = h[i+2]*x[j+i+2]
|| MPYH .M1 A8,A10,A10 ;* p01 = h[i+1]*x[j+i+1]
||[A2] ADD .L2 B4,B11,B4 ;* sum1(p10) = p10 + sum1
|| LDW .D1 *A4++[2],B9 ;** x[j+i+2] & x[j+i+3]
|| LDW .D2 *B1++[2],A10 ;** x[j+i+0] & x[j+i+1]

;Branch occurs here

  [!A2] SHR .S1 A10,15,A12 ; (Asum0 >> 15)

  [!A2] STH .D2 B11,*B6++[2] ; y[j+1] = (Bsum1 >> 15)
||[!A2] STH .D1 A12,*A6++[2] ; y[j] = (Asum0 >> 15)

6.14.9 Comparing Performance

The cycle count of this code is 1612: 50 (8 � 4 + 0) + 12. The overhead due
to the outer loop has been completely eliminated.

Table 6–28. Comparison of FIR Filter Code

Code Example Cycles Cycle Count

Example 6–61 FIR with redundant load elimination 50 (16 � 2 + 9 + 6) + 2 2352

Example 6–69 FIR with redundant load elimination and no memory
hits

50 (8 � 4 + 10 + 6) + 2 2402

Example 6–71 FIR with redundant load elimination and no memory
hits with outer loop software-pipelined

50 (7 � 4 + 6 + 6) + 6 2006

Example 6–74 FIR with redundant load elimination and no memory
hits with outer loop conditionally executed with inner
loop

50 (8 � 4 + 0) + 12 1612
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Interrupts

This chapter describes interrupts from a software-programming point of view.
A description of single and multiple register assignment is included, followed
by code generation of interruptible code and finally, descriptions of interrupt
subroutines.
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7.1 Overview of Interrupts

An interrupt is an event that stops the current process in the CPU so that the
CPU can attend to the task needing completion because of another event.
These events are external to the core CPU but may originate on-chip or off-
chip. Examples of on-chip interrupt sources include timers, serial ports, DMAs
and external memory stalls. Examples of off-chip interrupt sources include
analog-to-digital converters, host controllers and other peripheral devices.

Typically, DSPs compute different algorithms very quickly within an asynchro-
nous system environment. Asynchronous systems must be able to control the
DSP based on events outside of the DSP core. Because certain events can
have higher priority than algorithms already executing on the DSP, it is some-
times necessary to change, or interrupt, the task currently executing on the
DSP.

The ’C6000 provides hardware interrupts that allow this to occur automatically.
Once an interrupt is taken, an interrupt subroutine performs certain tasks or
actions, as required by the event. Servicing an interrupt involves switching
contexts while saving all state of the machine. Thus, upon return from the inter-
rupt, operation of the interrupted algorithm is resumed as if there had been no
interrupt. Saving state involves saving various registers upon entry to the inter-
rupt subroutine and then restoring them to their original state upon exit.

This chapter focuses on the software issues associated with interrupts. The
hardware description of interrupt operation is fully described in the
TMS320C6000 CPU and Instruction Set Reference Guide.

In order to understand the software issues of interrupts, we must talk about two
types of code: the code that is interrupted and the interrupt subroutine, which
performs the tasks required by the interrupt. The following sections provide in-
formation on:

� Single and multiple assignment of registers
� Loop interruptibility
� How to use the ’C6000 code generation tools to satisfy different require-

ments
� Interrupt subroutines
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7.2 Single Assignment vs. Multiple Assignment

Register allocation on the ’C6000 can be classified as either single assignment
or multiple assignment. Single assignment code is interruptible; multiple as-
signment is not interruptible. This section discusses the differences between
each and explains why only single assignment is interruptible.

Example 7–1 shows multiple assignment code. The term multiple assignment
means that a particular register has been assigned with more than one value
(in this case 2 values). On cycle 4, at the beginning of the ADD instruction, reg-
ister A1 is assigned to two different values. One value, written by the SUB in-
struction on cycle 1, already resides in the register. The second value is called
an in-flight value and is assigned by the LDW instruction on cycle 2. Because
the LDW instruction does not actually write a value into register A1 until the end
of cycle 6, the assignment is considered in-flight.

In-flight operations cause code to be uninterruptible due to unpredictability.
Take, for example, the case where an interrupt is taken on cycle 3. At this point,
all instructions which have begun execution are allowed to complete and no
new instructions execute. So, 3 cycles after the interrupt is taken on cycle 3,
the LDW instruction writes to A1. After the interrupt service routine has been
processed, program execution continues on cycle 4 with the ADD instruction.
In this case, the ADD reads register A1 and will be reading the result of the
LDW, whereas normally the result of the SUB should be read. This unpredict-
ability means that in order to ensure correct operation, multiple assignment
code should not be interrupted and is thus, considered uninterruptible.

Example 7–1. Code With Multiple Assignment of A1

cycle

1 SUB .S1 A4,A5,A1 ; writes to A1 in single cycle

2 LDW .D1 *A0,A1 ; writes to A1 after 4 delay slots

3 NOP

4 ADD .L1 A1,A2,A3 ; uses old A1 (result of SUB)

5–6 NOP 2

7 MPY .M1 A1,A4,A5 ; uses new A1 (result of LDW)

Example 7–2 shows the same code with a new register allocation to produce
single assignment code. Now the LDW assigns a value to register A6 instead
of A1. Now, regardless of whether an interrupt is taken or not, A1 maintains
the value written by the SUB instruction because LDW now writes to A6. Be-
cause there are no in-flight registers that are read before an in-flight instruction
completes, this code is interruptible.
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Example 7–2. Code Using Single Assignment

cycle

1 SUB .S1 A4,A5,A1 ; writes to A1 in single cycle

2 LDW .D1 *A0,A6 ; writes to A1 after 4 delay slots

3 NOP

4 ADD .L1 A1,A2,A3 ; uses old A1 (result of SUB)

5–6 NOP 2

7 MPY .M1 A6,A4,A5 ; uses new A1 (result of LDW)

Both examples involve exactly the same schedule of instructions. The only dif-
ference is the register allocation. The single assignment register allocation, as
shown in Example 7–2, can result in higher register pressure (Example 7–2
uses one more register than Example 7–1).

The next section describes how to generate interruptible and non-interruptible
code with the ’C6000 code generation tools.
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7.3 Interruptible Loops

Even if code employs single assignment, it may not be interruptible in a loop.
Because the delay slots of all branch operations are protected from interrupts
in hardware, all interrupts remain pending as long as the CPU has a pending
branch. Since the branch instruction on the ’C6000 has 5 delay slots, loops
smaller than 6 cycles always have a pending branch. For this reason, all loops
smaller than 6 cycles are uninterruptible.

There are two options for making a loop with an iteration interval less than 6
interruptible.

1) Simply slow down the loop and force an iteration interval of 6 cycles. This
is not always desirable since there will be a performance degradation.

2) Unroll the loop until an iteration interval of 6 or greater is achieved. This
ensures at least the same performance level and in some cases can im-
prove performance (see section 6.9, Loop Unrolling and section 7.4.4,
Getting the Most Performance Out of Interruptible Code). The disadvan-
tage is that code size increases.

The next section describes how to automatically generate these different op-
tions with the ’C6000 code generation tools.
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7.4 Interruptible Code Generation

The ’C6000 code generation tools provide a large degree of flexibility for inter-
ruptibility. Various combinations of single and multiple assignment code can
be generated automatically to provide the best tradeoff in interruptibility and
performance for each part of an application. In most cases, code performance
is not affected by interruptibility, but there are some exceptions:

� Software pipelined loops that have high register pressure can fail to allo-
cate registers at a given iteration interval when single assignment is re-
quired, but might otherwise succeed to allocate if multiple assignment
were allowed. This can result in a larger iteration interval for single assign-
ment software pipelined loops and thus lower performance. To determine
if this is a problem for looped code, use the -mw feedback option. If you
see a “Cannot allocate machine registers” message after the message
about searching for a software pipeline schedule, then you have a register
pressure problem.

� Because loops with minimum iteration intervals less than 6 are not inter-
ruptible, higher iteration intervals might be used which results in lower per-
formance. Unrolling the loop, however, prevents this reduction in perfor-
mance (See section 7.4.4.)

� Higher register pressure in single assignment can cause data spilling to
memory in both looped code and non-looped code when there are not
enough registers to store all temporary values. This reduces performance
but occurs rarely and only in extreme cases.

The tools provide 3 levels of control to the user. These levels are described in
the following sections. For a full description of interruptible code generation,
see the TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

7.4.1 Level 0 - Specified Code is Guaranteed to Not Be Interrupted

At this level, the compiler does not disable interrupts. Thus, it is up to you to
guarantee that no interrupts occur. This level has the advantage that the com-
piler is allowed to use multiple assignment code and generate the minimum
iteration intervals for software pipelined loops.

The command line option -mi (no value specified) can be used for an entire
module and the following pragma can be used to force this level on a particular
function:

#pragma FUNC_INTERRUPT_THRESHOLD(func, uint_max);
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7.4.2 Level 1 – Specified Code Interruptible at All Times

At this level, the compiler employs single assignment everywhere and never
produces a loop of less than 6 cycles.  The command line option –mi1 can be
used for an entire module and the following pragma can be used to force this
level on a particular function:

#pragma FUNC_INTERRUPT_THRESHOLD(func, 1);

7.4.3 Level 2 – Specified Code Interruptible Within Threshold Cycles

The compiler will disable interrupts around loops if the specified threshold
number is not exceeded. In other words, the user can specify a threshold, or
maximum interrupt delay, that allows the compiler to use multiple assignment
in loops that do not exceed this threshold. The code outside of loops can have
interrupts disabled and also use multiple assignment as long as the threshold
of uninterruptible cycles is not exceeded. If the compiler cannot determine the
loop count of a loop, then it assumes the threshold is exceeded and will gener-
ate an interruptible loop.

The command line option –mi (threshold) can be used for an entire module and
the following pragma can be used to specify a threshold for a particular func-
tion.

#pragma FUNC_INTERRUPT_THRESHOLD(func, threshold);
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7.4.4 Getting the Most Performance Out of Interruptible Code

As stated in Chapter 4 and Chapter 7, the .trip directive and the MUST_ITER-
ATE pragma can be used to specify a maximum value for the trip count of a
loop. This information can help to prevent performance loss when your loops
need to be interruptible as in Example 7–3.

For example, if your application has an interrupt threshold of 100 cycles, you
will use the -mi100 option when compiling your application. Assume that there
is a dot product routine in your application as follows:

Example 7–3. Dot Product With _nassert Guaranteeing Minimum Trip Count

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (20);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

With the MUST_ITERATE pragma, the compiler only knows that this loop will
execute at least 20 times. Even with the interrupt threshold set at 100 by the
-mi option, the compiler will still produce a 6-cycle loop for this code (with only
one result computed during those six cycles) because the compiler has to ex-
pect that a value of greater than 100 may be passed into n.

After looking at the application, you discover that n will never be passed a value
greater than 50 in the dot product routine. Example 7–4 adds this information
to the _nassert statement as follows:
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Example 7–4. Dot Product With _nassert Guaranteeing Trip Count Range

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (20,50);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

Now the compiler knows that the loop will complete in less than 100 cycles
when it generates a 1-cycle kernel that must execute 50 times (which equals
50 cycles). The total cycle count of the loop is now known to be less than the
interrupt threshold, so the compiler will generate the optimal 1-cycle kernel
loop. You can do the same thing in linear assembly code by specifying both
the minimum and maximum trip counts with the .trip directive.

Note:

The compiler does not take memory bank conflicts into account. Because of
this it is recommended that you are conservative with the threshold value.

Let us now assume the worst case scenario - the application needs to be inter-
ruptible at any given cycle. In this case, you will build your application with an
interrupt threshold of one. It is still possible to regain some performance lost
from setting the interrupt threshold to one. Example 7–5 shows where the fac-
tor option in .trip and using the third argument of the MUST_ITERATE pragma
are useful. For more information, see section 3.4.3.4, Loop Unrolling.
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Example 7–5. Dot Product With MUST_ITERATE Pragma Guaranteeing Trip Count Range
and Factor of 2

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (20,50,2);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

By enabling unrolling, performance has doubled from one result per 6-cycle
kernel to two results per 6-cycle kernel. By allowing the compiler to maximize
unrolling when using the interrupt threshold of one, you can get most of the
performance back. Example 7–6 shows a dot product loop that will execute a
factor of 4 between 16 and 48 times.

Example 7–6. Dot Product With MUST_ITERATE Pragma Guaranteeing Trip Count Range
and Factor of 4

int dot_prod(short *a, short *b, int n)

{

int i, sum = 0;

#pragma MUST_ITERATE (16,48,4);

for (i = 0; i < n; i++)

sum += a[i] * b[i];

return sum;

}

The compiler knows that the trip count is some factor of four. The compiler will
unroll this loop such that four iterations of the loop (four results are calculated)
occur during the six cycle loop kernel. This is an improvement of four times
over the first attempt at building the code with an interrupt threshold of one. The
one drawback of unrolling the code is that code size increases, so using this
type of optimization should only be done on key loops.
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7.5 Interrupt Subroutines

The interrupt subroutine (ISR) is simply the routine, or function, that is called
by an interrupt. The ’C6000 provides hardware to automatically branch to this
routine when an interrupt is received based on an interrupt service table. (See
the Interrupt Service Table in the TMS320C6x CPU and Instruction Set Refer-
ence Guide.) Once the branch is complete, execution begins at the first exe-
cute packet of the ISR.

Certain state must be saved upon entry to an ISR in order to ensure program
accuracy upon return from the interrupt. For this reason, all registers that are
used by the ISR must be saved to memory, preferably a stack pointed to by
a general purpose register acting as a stack pointer. Then, upon return, all val-
ues must be restored. This is all handled automatically by the C/C++ compiler,
but must be done manually when writing hand-coded assembly.

7.5.1 ISR with the C/C++ Compiler

The C/C++ compiler automatically generates ISRs with the keyword interrupt.
The interrupt function must be declared with no arguments and should return
void. For example:

interrupt void int_handler()
 {
 unsigned int flags;
 ...
 }
 

Alternatively, you can use the interrupt pragma to define a function to be an
ISR:

#pragma INTERRUPT(func);

The result either case is that the C/C++ compiler automatically creates a func-
tion that obeys all the requirements for an ISR. These are different from the
calling convention of a normal C/C++ function in the following ways:

� All general purpose registers used by the subroutine must be saved to the
stack. If another function is called from the ISR, then all the registers
(A0–A15, B0–B15 for ’C62x and ’C67x, and A0–A31, B0–B31 for ’C64x)
are saved to the stack.

� A B IRP instruction is used to return from the interrupt subroutine instead
of  the B B3 instruction used for standard C/C++ functions

� A function cannot return a value and thus, must be declared void.

See the section on Register Conventions in the TMS320C6000 Optimizing
C/C++ Compiler User’s Guide for more information on standard function call-
ing conventions.
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7.5.2 ISR with Hand-Coded Assembly

When writing an ISR by hand, it is necessary to handle the same tasks the
C/C++ compiler does. So, the following steps must be taken:

� All registers used must be saved to the stack before modification. For this
reason, it is preferable to maintain one general purpose register to be used
as a stack pointer in your application. (The C/C++ compiler uses B15.)

� If another C routine is called from the ISR (with an assembly branch in-
struction to the _c_func_name label) then all registers must be saved to
the stack on entry.

� A B IRP instruction must be used to return from the routine. If this is the
NMI ISR, a B NRP must be used instead.

� An NOP 4 is required after the last LDW in this case to ensure that B0 is
restored before returning from the interrupt.

Example 7–7. Hand-Coded Assembly ISR

* Assume Register B0–B4 & A0 are the only registers used by the
* ISR and no other functions are called

STW  B0,*B15–– ; store B0 to stack
STW  A0,*B15–– ; store A0 to stack
STW  B1,*B15–– ; store B1 to stack
STW  B2,*B15–– ; store B2 to stack
STW  B3,*B15–– ; store B3 to stack
STW  B4,*B15–– ; store B4 to stack

* Beginning of ISR code
...

* End of ISR code
 

LDW  *++B15,B4 ; restore B4
LDW  *++B15,B3 ; restore B3
LDW  *++B15,B2 ; restore B2
LDW  *++B15,B1 ; restore B1
LDW  *++B15,A0 ; restore A0

|| B   IRP ; return from interrupt
LDW  *++B15,B0 ; restore B0
NOP  4 ; allow all multi–cycle instructions

     ; to complete before branch is taken

7.5.3 Nested Interrupts

Sometimes it is desirable to allow higher priority interrupts to interrupt lower
priority ISRs. To allow nested interrupts to occur, you must first save the IRP,
IER, and CSR to a register which is not being used or to or some other memory
location (usually the stack). Once these have been saved, you can reenable
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the appropriate interrupts. This involves resetting the GIE bit and then doing
any necessary modifications to the IER, providing only certain interrupts are
allowed to interrupt the particular ISR. On return from the ISR, the original val-
ues of the IRP, IER, and CSR must be restored.

Example 7–8. Hand-Coded Assembly ISR Allowing Nesting of Interrupts

* Assume Register B0–B4 & A0 are the only registers used by the
* ISR and no other functions are called

STW B0,*B15–– ; store B0 to stack
|| MVC IRP, B0 ; save IRP

STW A0,*B15–– ; store A0 to stack
|| MVC IER, B1 ; save IER
|| MVK mask,A0 ; setup a new IER (if desirable)

STW B1,*B15–– ; store B1 to stack
|| MVC A0, IER ; setup a new IER (if desirable)

STW B2,*B15–– ; store B2 to stack
|| MVC CSR,A0 ; read current CSR

STW B3,*B15–– ; store B3 to stack
|| OR 1,A0,A0 ; set GIE bit field in CSR

STW B4,*B15–– ; store B4 to stack
|| MVC A0,CSR ; write new CSR with GIE enabled

STW B0,*B15–– ; store B0 to stack (contains IRP)
STW B1,*B15–– ; store B1 to stack (contains IER)
STW A0,*B15–– ; store A0 to stack (original CSR)

* Beginning of ISR code
...

* End of ISR code

LDW *++B15,A0 ; restore A0 (original CSR)
LDW *++B15,B1 ; restore B1 (contains IER)
LDW *++B15,B0 ; restore B0 (contains IRP)
LDW *++B15,B4 ; restore B4
LDW *++B15,B3 ; restore B3
LDW *++B15,B2 ; restore B2

|| MVC B0,IRP ; restore original IRP
LDW *++B15,B1 ; restore B1

|| MVC B1,IER ; restore original IER
LDW *++B15,A0 ; restore A0

|| B IRP ; return from interrupt
LDW *++B15,B0 ; restore B0
MVC A0,CSR ; restore original CSR

     ; to complete before branch is taken
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’C64x Programming Considerations

This chapter covers material specific to the TMS320C64x series of DSPs.  It
builds on the material presented elsewhere in this book, whith additional infor-
mation specific to the VelociTI.2 extensions that the ’C64x provides.

Before reading this chapter, familiarize yourself with the programming con-
cepts presented earlier for the entire C6000 family, as these concepts also ap-
ply to the ’C64x.

The sample code that is used in this chapter is included on the Code Genera-
tion Tools and Code Composer Studio CD-ROM. When you install your code
generation tools, the example code is installed in the c6xtools directory. Use
the code in that directory to go through the examples in this chapter.
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8.1 Overview of ’C64x Architectural Enhancements

The ’C64x is a fixed-point digital signal processor (DSP) and is the first DSP
to add VelociTI.2 extensions to the existing high-performance VelociTI archi-
tecture. VelociTI.2 extensions provide the following features:

� Greater scheduling flexibility for existing instructions

� Greater memory bandwidth with double-word load and store instructions

� Support for packed 8-bit and 16-bit data types

� Support for non-aligned memory accesses

� Special purpose instructions for communications-oriented applications

8.1.1 Improved Scheduling Flexibility

The ’C64x improves scheduling flexibility using three different methods.  First,
it makes several existing instructions available on a larger number of units.
Second, it adds cross-path access to the D-unit so that arithmetic and logical
operations which use a cross-path may be scheduled there. Finally, it removes
a number of scheduling restrictions associated with 40-bit operations, allowing
more flexible scheduling of high-precision code.

8.1.2 Greater Memory Bandwidth

The ’C64x provides double-word load and store instructions (LDDW and
STDW) which can access 64 bits of data at a time.  Up to two double-word load
or store instructions can be issued every cycle. This provides a peak bandwith
of 128 bits per cycle to on-chip memory.

8.1.3 Support for Packed Data Types

The ’C64x builds on the ’C62x’s existing support for packed data types by im-
proving support for packed signed 16-bit data and adding new support for
packed unsigned 8-bit data. Packed data types are supported using new pack/
unpack, logical, arithmetic and multiply instructions for manipulating packed
data.

Packed data types store multiple pieces of data within a single 32-bit register.
Pack and unpack instructions provide a method for reordering this packed
data, and for converting between packed formats. Shift and merge instructions
(SHLMB and SHRMB) also provide a means for reordering packed 8-bit data.

New arithmetic instructions include standard addition, subtraction, and com-
parison, as well as advanced operations such as minimum, maximum, and av-
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erage. New packed multiply instructions provide support for both standard
multiplies, as well as rounded multiplies and dot products. With packed data
types, a single instruction can operate on two 16-bit quantities or four 8-bit
quantities at once.

8.1.4 Non-aligned Memory Accesses

In order to capitalize on its memory and processing bandwidth, the ’C64x pro-
vides support for non-aligned memory accesses. Non-aligned memory ac-
cesses provide a method for accessing packed data types without the restric-
tions imposed by 32-bit or 64-bit alignment boundaries. The ’C64x can access
up to 64 bits per cycle at any byte boundary with non-aligned load and store
instructions (LDNW, LDNDW, STNW, and STNDW).

8.1.5 Additional Specialized Instructions

The ’C64x also provides a number of new bit-manipulation and other special-
ized instructions for improving performance on bit-oriented algorithms. These
instructions are designed to improve performance on error correction, encryp-
tion, and other bit-level algorithms. Instructions in this category include BITC4,
BITR, ROTL, SHFL, and DEAL. See the TMS320C6000 CPU and Instruction
Set User’s Guide for more details on these and related instructions.
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8.2 Packed-Data Processing on the ’C64x

8.2.1 Introduction to Packed Data Processing Techniques

Packed-data processing is a type of processing where a single instruction ap-
plies the same operation to multiple independent pieces of data. For example,
the ADD2 instruction performs two independent 16-bit additions between two
pairs of 16-bit values. This produces a pair of 16-bit results. In this case, a
single instruction, ADD2, is operating on multiple sets of data, the two indepen-
dent pairs of addends.

Packed-data processing is a powerful method for exploiting the inherent paral-
lelism in signal processing and other calculation-intensive code, while retain-
ing dense code. Many signal processing functions apply the same sets of op-
erations to many elements of data. Generally, these operations are indepen-
dent of each other. Packed-data processing allows the programmer to capital-
ize on this by operating on multiple pieces of data with a single compact stream
of instructions. This saves code size and dramatically boosts performance.

The ’C64x provides a rich family of instructions which are designed to work
with packed-data processing. At the core of this paradigm are packed data
types, which are designed to store multiple data elements in a single machine
register. Packed-data processing instructions are built around these data
types to provide a flexible, powerful, programming environment.

Note:

Although ’C6000 family supports both big-endian and little-endian operation,
the examples and figures in this section will focus on little endian operation
only. The packed-data processing extensions that the ’C64x provides will op-
erate in either big- or little-endian mode, and will perform identically on val-
ues stored in the register file. However, accesses to memory behave differ-
ently in big-endian mode.

8.2.2 Packed Data Types

Packed data types are the cornerstone of ’C64x packed-data processing sup-
port. Each packed data type packs multiple elements into a single 32-bit gener-
al purpose register. Table 8–1 below lists the packed data types that the ’C64x
supports. The greatest amount of support is provided for unsigned 8-bit and
signed 16-bit values.
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Table 8–1.  Packed data types

Element Size Signed/Unsigned Elements in 32-bit
word

Element type Level of support

8 bits

16 bits

unsigned

signed

4

2

unsigned char

short

high

high

8 bits

16 bits

signed

unsigned

4

2

char

unsigned short

limited

limited

8.2.3 Storing Multiple Elements in a Single Register

Packed data types can be visualized as 8-bit or 16-bit partitions inside the larg-
er 32-bit register. These partitions are merely logical partitions. As with all
’C64x instructions, instructions which operate on packed data types operate
directly on the 64 general purpose registers in the register file. There are no
special packed data registers. How data in a register is interpreted is deter-
mined entirely by the instruction that is using the data. Figure 8–1 and
Figure 8–2 illustrate how four bytes and two half-words are packed into a
single word.

Figure 8–1. Four Bytes Packed Into a Single General Purpose Register.

Byte 3 Byte 2 Byte 1 Byte 0 General purpose
register

32 bits

8 bits

Byte 2

8 bits

Byte 1

8 bits

Byte 0

8 bits

Byte 3
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Figure 8–2. Two Half–Words Packed Into a Single General Purpose Register.

Halfword 1

16 bits 16 bits

Halfword 0

Halfword 1 Halfword 0

32 bits

General purpose

register

Notice that there is no distinction between signed or unsigned data made in
Figure 8–1 and Figure 8–2. This is due to the fact that signed and unsigned
data are packed identically within the register. This allows the instructions
which are not sensitive to sign bits (such as adds and subtracts) to operate on
signed and unsigned data equally. The distinction between signed and un-
signed comes into play primarily when performing multiplication, comparing
elements, and unpacking data (since either sign or zero extension must be
performed).

Table 8–2 provides a summary of the operations that the ’C64x provides on
packed data types, and whether signed or unsigned types are supported. In-
structions which were not specifically designed for packed data types can also
be used to move, store, unpack, or repack data.
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Table 8–2.  Supported Operations on Packed Data Types

Operation Support for 8-bit Support for 16-bit Notes

Signed Unsigned Signed Unsigned

ADD/SUB Yes Yes Yes Yes

Saturated ADD Yes Yes *

Booleans Yes Yes Yes Yes Uses generic
boolean instruc-
tions

Shifts Yes Yes Right-shift only

Multiply * Yes Yes *

Dot Product * Yes Yes *

Max/Min/
Compare

Yes Yes CMPEQ works
with signed or
unsigned

Pack Yes Yes Yes Yes

Unpack Yes Yes Yes See Table 8–4
for 16-bit un-
packs

* = Only ‘signed-by-unsigned’ support in these categories.

8.2.4 Packing and Unpacking Data

The ’C64x provides a family of packing and unpacking instructions which are
used for converting between various packed and non-packed data types, as
well as for manipulating elements within a packed type. Table 8–4 lists the
available packing instructions and uses.
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Table 8–3.  Instructions for Manipulating Packed Data Types

Mnemonic Intrinsic Typical Uses With Packed Data

PACK2

PACKH2

PACKHL2

PACKLH2

_pack2

_packh2

_packhl2

_packlh2

Packing 16-bit portions of 32-bit quantities.

Rearranging packed 16-bit quantities.

Rearranging pairs of 16-bit quantities.

SPACK2 _spack2 Saturating 32-bit quantities down to signed 16-bit values, packing
them together.

SHR

SHRU

EXT

EXTU

(n/a)

(n/a)

_ext

_extu

Unpacking 16-bit values into 32-bit values

PACKH4

PACKL4

_packh4

_packl4

Unpacking 16-bit intermediate results into 8-bit final results.

De-interleaving packed 8-bit values.

UNPKHU4

UNPKLU4

_unpkhu4

_unpklu4

Unpacking unsigned 8-bit data into 16-bits.

Preparing 8-bit data to be interleaved.

SPACKU4 _spacku4 Saturating 16-bit quantities down to unsigned 8-bit values, packing
them together.

SHLMB

SHRMB

SWAP4

ROTL

_shlmb

_shrmb

_swap4

_rotl

Rearranging packed 8-bit quantities

The _packXX2 group of intrinsics work by extracting selected half-words from
two 32-bit registers, returning the results packed into a 32-bit word. This is pri-
marily useful for manipulating packed 16-bit data, although they may be used
for manipulating pairs of packed 8-bit quantites. Figure 8–3 illustrates the four
_packXX2() intrinsics, _pack2(), _packlh2(), _packhl2(), and _packh2(). (The
l and the h in the name refers to which half of each 32-bit input is being copied
to the output, similar to how the _mpyXX() intrisics are named.)
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Figure 8–3. Graphical Representation of _packXX2 Intrinsics
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The saturating pack intrinsic, _spack2, is closely related to the _pack2 intrin-
sic. The main difference is that the saturating pack first saturates the signed
32-bit source values to signed 16-bit quantities, and then packs these results
into a single 32-bit word. This makes it easier to support applications which
generate some intermediate 32-bit results, but need a signed 16-bit result at
the end. Figure 8–4 shows _spack2’s operation graphically.
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Figure 8–4. Graphical Representation of _spack2
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Notice that there are no special unpack operations for 16-bit data. Instead, the
normal 32-bit right-shifts and extract operations can be used to unpack 16-bit
elements into 32-bit quantities. Table 8–4 describes how to unpack signed and
unsigned 16-bit quantities.

Table 8–4.  Unpacking Packed 16-bit Quantities to 32-bit Values

Type Position C code Assembly code

Signed 16-bit Upper half dst = ((signed)src) >> 16; SHR  src, 16, dst

Lower half dst = _ext(src, 16, 16); EXT  src, 16,16, dst

Unsigned 16-bit Upper half dst = ((unsigned)src)>>16; SHRU src, 16, dst

Lower half dst = _ext (src, 16, 16); EXTU src, 16,16, dst

For 8-bit data, the ’C64x provides the _packX4, _spacku4, and _unpkX4 intrin-
sics for packing and unpacking data. The operation of these intrinsics is illus-
trated in Figure 8–5 and Figure 8–6. These intrinsics are geared around con-
verting between 8-bit and 16-bit packed data types. To convert between 32-bit
and 8-bit values, an intermediate step at 16-bit precision is required.
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Figure 8–5. Graphical Representation of 8–bit Packs (_packX4 and _spacku4)
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Figure 8–6. Graphical Representation of 8–bit Unpacks (_unpkXu4)
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The ’C64x also provides a handful of additional byte-manipulating operations
that have proven useful in various algorithms. These operations are neither
packs nor unpacks, but rather shuffle bytes within a word. Uses include con-
volution-oriented algorithms, complex number arithmetic, and so on. Opera-
tions in this category include the intrinsics _shlmb, _shrmb, _swap4, and _rotl.
The first three in this list are illustrated in Figure 8–7.
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Figure 8–7. Graphical Representation of (_shlmb, _shrmb, and _swap4)
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8.2.5 Optimizing for Packed Data Processing

The ’C64x supports two basic forms of packed-data optimization, namely vec-
torization and macro operations.

Vectorization works by applying the exact same simple operations to several
elements of data simultaneously. Kernels such as vector sum and vector multi-
ply, shown in Example 8–1 and Example 8–2, exemplify this sort of computa-
tion.
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Example 8–1. Vector Sum

void vec_sum(const short *restrict a, const short *restrict b,
short *restrict c, int len)

{
int i;

for (i = 0; i < len; i++)
c[i] = b[i] + a[i];

}

Example 8–2. Vector Multiply

void vec_mpy(const short *restrict a, const short *restrict b,
short *restrict c, int len, int shift)

{
int i;

for (i = 0; i < len; i++)
c[i] = (b[i] * a[i]) >> shift;

}

This type of code is refered to as vector code because each of the input arrays
is a vector of elements, and the same operation is being applied to each ele-
ment.  Pure vector code has no computation between adjacent elements when
calculating results. Also, input and output arrays tend to have the same num-
ber of elements. Figure 8–8 illustrates the genenal form of a simple vector op-
eration that operates on inputs from arrays A and B, producing an output, C
(such as our Vector Sum and Vector Multiply kernels above perform).

Figure 8–8. Graphical Representation of a Simple Vector Operation
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Although pure vector algorithms exist, most applications do not consist purely
of vector operations as simple as the one shown above. More commonly, an
algorithm will have portions which behave as a vector algorithm, and portions
which do not. These portions of the code are addressed by another packed-
data processing techniques.

The second form of packed data optimization involves combining multiple op-
erations on packed data into a single, larger operation referred to here as a
macro operation. This can be very similar to vectorization, but the key differ-
ence is that there is significant mathematical interaction between adjacent ele-
ments. Simple examples include dot product operations and complex multi-
plies, as shown in Example 8–3 and Example 8–4.

Example 8–3. Dot Product

int dot_prod(const short *restrict a, const short *restrict b, int len)
{

int i;
int sum = 0;

for (i = 0; i < len; i++)
sum += b[i] * a[i];

return sum;
}

Example 8–4. Vector Complex Multiply

void vec_cx_mpy(const short *restrict a, const short *restrict b,
short *restrict c)

{
int j; 

for (i = j = 0; i < len; i++, j += 2)
{
/* Real components are at even offsets, and imaginary components
are at odd offsets within each array. */
c[j+0] = (a[j+0] * b[j+0] – a[j+1] * b[j+1]) >> 16;
c[j+1] = (a[j+0] * b[j+1] + a[j+1] * b[j+0]) >> 16;
}

}

The data flow for the dot product is shown in Figure 8–9. Notice how this is sim-
ilar to the vector sum in how the array elements are brought in, but different
in how the final result is tabulated.
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Figure 8–9. Graphical Representation of Dot Product
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As you can see, this does not fit the pure vector model presented in
Example 8–3. The Vector Complex Multiply also does not fit the pure vector
model, but for different reasons.

Mathematically, the vector complex multiply is a pure vector operation per-
formed on vectors of complex numbers, as its name implies. However, it is not,
in implementation, because neither the language type nor the hardware itself
directly supports a complex multiply as a single operation.

The complex multiply is built up from a number of real multiplies, with the com-
plex numbers stored in arrays of interleaved real and imaginary values. As a
result, the code requires a mix of vector and non–vector approaches to be opti-
mized. Figure 8–10 illustrates the operations that are performed on a single
iteration of the loop. As you can see, there is a lot going on in this loop.
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Figure 8–10. Graphical Representation of a Single Iteration of Vector Complex Multiply.
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The following sections revisit these basic kernels and illustrate how single in-
struction multiple data optimizations apply to each of these.

8.2.6 Vectorizing With Packed Data Processing

The most basic packed data optimization is to use wide memory accesses, in
other words, word and double-word loads and stores, to access narrow data
such as byte or half-word data. This is a simple form of vectorization, as de-
scribed above, applied only to the array accesses.

Widening memory accesses generally serves as a starting point for other vec-
tor and packed data operations. This is due to the fact that the wide memory
accesses tend to impose a packed data flow on the rest of the code around
them. This type of optimization is said to work from the outside in, as loads and
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stores typically occur near the very beginning and end of the loop body. The
following examples use this outside-in approach to perform packed data opti-
mization techniques on the example kernels.

Note:

The following examples assume that the compiler has not performed any
packed data optimizations. The most recent release of the ’C6000 Code
Generation Tools will apply many of the optimizations described in this chap-
ter automatically when presented with sufficient information about the code.

8.2.6.1 Vectorizing the Vector Sum

Consider the vector sum kernel presented in Example 8–1. In its default form,
it reads one half–word from the a[ ] array, one half-word from the b[ ] array,
adds them, and writes a single half–word result to the c[ ] array. This results
in a 2-cycle loop that moves 48 bits per iteration. When you consider that the
’C64x can read or write 128 bits every cycle, it becomes clear that this is very
inefficient.

One simple optimization is to replace the half-word accesses with double-word
accesses to read and write array elements in groups of four. When doing this,
array elements are read into the register file with four elements packed into a
register pair. The array elements are packed with, two elements in each regis-
ter, across two registers. Each register contains data in the packed 16-bit data
type illustrated in Figure 8–2.

For the moment, assume that the arrays are double-word aligned, as shown
in Example 8–5. For more information about methods for working with arrays
that are not specially aligned, see section 8.2.8. The first thing to note is that
the ’C6000 Code Generation Tools lack a 64-bit integral type. This is not a
problem, however, as the tools allow the use of double, and the intrinsics _lo(),
_hi(), _itod() to access integer data with double-word loads. To account for the
fact that the loop is operating on multiple elements at a time, the loop counter
must be modified to count by fours instead of by single elements.

The type-cast tells the compiler to treat the array as an array of type double.
This causes LDDW and STDW instructions to be issued for the array ac-
cesses. The _lo() and _hi() intrinsics break apart a 64-bit double into its lower
and upper 32-bit halves. Each of these halves contain two 16-bit values
packed in a 32-bit word. To store the results, the _itod() intrinsics assemble
32-bit words back into 64-bit doubles to be stored. Figure 8–11 and
Figure 8–12 show these processes graphically.

The adds themselves have not been addressed, so for now, the add is re-
placed with a comment.
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Example 8–5. Vectorization: Using LDDW and STDW in Vector Sum

void vec_sum(const short *restrict a, const short *restrict b,
                 short *restrict c, int len)

{
int i;
unsigned a_hi, a_lo;
unsigned b_hi, b_lo;
unsigned c_hi, c_lo;

for (i = 0; i < len; i += 4)
{

a_hi = _hi(*(const double *) &a[i]);
a_lo = _lo(*(const double *) &a[i]);

b_hi = _hi(*(const double *) &b[i]);
b_lo = _lo(*(const double *) &b[i]);

        
/*  ...somehow, the ADD occurs here, 
with results in c_hi, c_lo... */

*(double *) &c[i] = _itod(c_hi, c_lo);
}

}

Figure 8–11.Array Access in Vector Sum by LDDW
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Figure 8–12. Array Access in Vector Sum by STDW
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This code now efficiently reads and writes large amounts of data. The next step
is to find a method to quickly add them. The _add2() intrinsic provides just that:
It adds corresponding packed elements in two different words, producing two
packed sums. It provides exactly what is needed, a vector addition.
Figure 8–13 illustrates.

Figure 8–13. Vector Addition
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So, putting in _add2() to perform the additions provides the complete code
shown in Example 8–6.
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Example 8–6. Vector Addition (Complete)

void vec_sum(const short *restrict a, const short *restrict b,
short *restrict c, int len)

{
int i;
unsigned a3_a2, a1_a0;
unsigned b3_b2, b1_b0;
unsigned c3_c2, c1_c0;

for (i = 0; i < len; i += 4)
{

a3_a2 = _hi(*(const double *) &a[i]);
a1_a0 = _lo(*(const double *) &a[i]);

b3_b2 = _hi(*(const double *) &b[i]);
b1_b0 = _lo(*(const double *) &b[i]);

        
c3_c2 = _add2(b3_b2, a3_a2);
c1_c0 = _add2(b1_b0, a1_a0);

*(double *) &c[i] = _itod(c3_c2, c1_c0);
}

}

At this point, the vector sum is fully vectorized, and can be optimized further
using other traditional techniques such as loop unrolling and software pipelin-
ing. These and other optimizations are described in detail throughout Chapter
7.

8.2.6.2 Vectorizing the Vector Multiply

The vector multiply shown in Figure 8–8 is similar to the vector sum, in that the
algorithm is a pure vector algorithm. One major difference, is the fact that the
intermediate values change precision. In the context of vectorization, this
changes the format the data is stored in, but it does not inhibit the ability to vec-
torize the code.

The basic operation of vector multiply is to take two 16-bit elements, multiply
them together to produce a 32-bit product, right-shift the 32-bit product to pro-
duce a 16-bit result, and then to store this result. The entire process for a single
iteration is shown graphically in Figure 8–14.
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Figure 8–14. Graphical Representation of a Single Iteration of Vector Multiply.
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Notice that the values are still loaded and stored as 16-bit quantities. There-
fore, you should use the same basic flow as the vector sum. Example 8–7
shows this starting point. Figure 8–11 and Figure 8–12 also apply to this exam-
ple to illustrate how data is being accessed.
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Example 8–7. Using LDDW and STDW in Vector Multiply

void vec_mpy(const short *restrict a, const short *restrict b,
                 short *restrict c, int len, int shift)

{
int i;
unsigned a_hi, a_lo;
unsigned b_hi, b_lo;
unsigned c_hi, c_lo;

for (i = 0; i < len; i += 4)
{

a_hi = _hi(*(const double *) &a[i]);
a_lo = _lo(*(const double *) &a[i]);

b_hi = _hi(*(const double *) &b[i]);
b_lo = _lo(*(const double *) &b[i]);

        
/*  ...somehow, the Multiply and Shift occur here, 
with results in c_hi, c_lo... */

*(double *) &c[i] = _itod(c_hi, c_lo);
}

}

The next step is to perform the multiplication. The ’C64x intrinsic, _mpy2(),
performs two 16�16 multiplies, providing two 32-bit results packed in a 64-bit
double. This provides the multiplication. The _lo() and _hi() intrinsics allow
separation of the two separate 32-bit products. Figure 8–15 illustrates how
_mpy2() works.

Figure 8–15. Packed 16�16 Multiplies Using _mpy2
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Once the 32-bit products are obtained, use standard 32-bit shifts to shift these
to their final precision. However, this will leave the results in two separate 32-bit
registers.
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The ’C64x provides the _pack family intrinsics to convert the 32-bit results into
16-bit results. The _packXX2() intrinsics, described in section 8.2.4, extract
two 16-bit values from two 32-bit registers, returning the results in a single
32-bit register. This allows efficient conversion of the 32-bit intermediate re-
sults to a packed 16-bit format.

In this case, after the right-shift, the affected bits will be in the lower half of the
32-bit registers. Use the _pack2() intrinsic to convert the 32-bit intermediate
values back to packed 16-bit results so they can be stored. The resulting C
code is shown in Example 8–8.

Example 8–8. Using _mpy2() and _pack2() to Perform the Vector Multiply

void vec_mpy1(const short *restrict a, const short *restrict b,
short *restrict c, int len, int shift)

{
int i;
unsigned a_hi, a_lo;                 /* Packed 16–bit values        */
unsigned b_hi, b_lo;                 /* Packed 16–bit values        */
double   c_hi_dbl, c_lo_dbl;         /* 32–bit prod in 64–bit pairs */
int      c_hi3, c_hi2, c_lo1, c_lo0; /* Separate 32–bit products    */
unsigned c_hi, c_lo;                 /* Packed 16–bit values        */

for (i = 0; i < len; i += 4)
{
a_hi = _hi(*(const double *) &a[i]);
a_lo = _lo(*(const double *) &a[i]);

b_hi = _hi(*(const double *) &b[i]);
b_lo = _lo(*(const double *) &b[i]);

/* Multiply elements together, producing four products */
c_hi_dbl = _mpy2(a_hi, b_hi);
c_lo_dbl = _mpy2(a_lo, b_lo);

/* Shift each of the four products right by our shift amount */
c_hi3 = _hi(c_hi_dbl) >> shift;
c_hi2 = _lo(c_hi_dbl) >> shift;
c_lo1 = _hi(c_lo_dbl) >> shift;
c_lo0 = _lo(c_lo_dbl) >> shift;

/* Pack the results back together into packed 16–bit format */
c_hi  = _pack2(c_hi3, c_hi2);
c_lo  = _pack2(c_lo1, c_lo0);

/* Store the results. */
*(double *) &c[i] = _itod(c_hi, c_lo);
}

}



Packed-Data Processing on the ’C64x

8-25’C64x Programming Considerations

This code works, but it is heavily bottlenecked on shifts. One way to eliminate
this bottleneck is to use the packed 16-bit shift intrinsic, _shr2(). This can be
done without losing precision, under the following conditions:

� If the shift amount is known to be greater than or equal to 16, use
_packh2() instead of _pack2() before the shift. If the shift amount is exactly
16, eliminate the shift. The _packh2 effectively performs part of the shift,
shifting right by 16, so that the job can be finished with a _shr2() intrinsic.
Figure 8–17 illustrates how this works.

� If the shift amount is less than 16, only use the _shr2() intrinsic if the 32-bit
products can be safely truncated to 16 bits first without losing significant
digits. In this case, use the _pack2() intrinsic, but the bits above bit 15 are
lost in the product. This is safe only if those bits are redundant (sign bits).
Figure 8–17 illustrates this case.
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Figure 8–16. Fine Tuning Vector Multiply (shift > 16)
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Figure 8–17. Fine Tuning Vector Multiply (shift < 16)
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Whether or not the 16-bit shift version is used, consider the vector multiply to
be fully optimized from a packed data processing standpoint. It can be further
optimized using the more general techniques such as loop-unrolling and soft-
ware pipelining that are discussed in Chapter 6.
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8.2.7 Combining Multiple Operations in a Single Instruction

The Dot Product and Vector Complex Multiply examples that were presented
earlier were both examples of kernels that benefit from macro operations, that
is, instructions which perform more than a simple operation.

The ’C64x provides a number of instructions which combine common opera-
tions together. These instructions reduce the overall instruction count in the
code, thereby reducing codesize and increasing code density. They also tend
to simplify programming. Some of the more commonly used macro operations
are listed in Table 8–5.

Table 8–5. Intrinsics Which Combine Multiple Operations in one Instruction

Intrinsic Instruction Operations combined

_dotp2 DOTP2 Performs two 16x16 multiplies and adds the products
together.

_dotpn2 DOTPN2 Performs two 16x16 multiplies and subtracts the sec-
ond product from the first.

_dotprsu2 DOTPRSU2 Performs two 16x16 multiplies, adds products togeth-
er, and shifts/rounds the sum.

_dotpnrsu2 DOTPNRSU2 Performs two 16x16 multiplies, subtracts the 2nd
product from the 1st, and shifts/rounds the difference.

_dotpu4

_dotpsu4

DOTPU4

DOTPSU4

Performs four 8x8 multiplies and adds products to-
gether.

_max2

_min2

MAX2

MIN2

Compares two pairs of numbers, and selects the
larger/smaller in each pair.

_maxu4

_minu4

MAXU4

MINU4

Compares four pairs of numbers, and selects the
larger/smaller in each pair.

_avg2 AVG2 Performs two 16-bit additions, followed by a right shift
by 1 with round.

_avgu4 AVGU4 Performs four 8-bit additions, followed a right shift by
1 with round.

_subabs4 SUBABS4 Finds the absolute value of the between four pairs of
8-bit numbers.

As you can see, these macro operations can replace a number of separate in-
structions rather easily. For instance, each _dotp2 eliminates an add, and each
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_dotpu4 eliminates three adds. The following sections describe how to write
the Dot Product and Vector Complex Multiply examples to take advantage of
these.

8.2.7.1 Combining Operations in the Dot Product Kernel

The Dot Product kernel, presented in Example 8–3, is one which benefits both
from vectorization as well as macro operations. First, apply the vectorization
optimization as presented earlier, and then look at combining operations to fur-
ther improve the code.

Vectorization can be performed on the array reads and multiplies that are this
kernel, as described in section 8.2.3. The result of those steps is the intermedi-
ate code shown in Example 8–9.

Example 8–9. Vectorized Form of the Dot Product Kernel

int dot_prod(const short *restrict a, const short *restrict b,
                 short *restrict c, int len)

{
int i;
int      sum = 0;                  /* 32–bit accumulation         */
unsigned a3_a2, a1_a0;             /* Packed 16–bit values        */
unsigned b3_b2, b1_b0;             /* Packed 16–bit values        */
double   c3_c2_dbl, c1_c0_dbl;     /* 32–bit prod in 64–bit pairs */
int      c3, c2, c1, c0;           /* Separate 32–bit products    */
unsigned c3_c2, c1_c0;             /* Packed 16–bit values        */

for (i = 0; i < len; i += 4)
{

a3_a2 = _hi(*(const double *) &a[i]);
a1_a0 = _lo(*(const double *) &a[i]);

b3_b2 = _hi(*(const double *) &b[i]);
b1_b0 = _lo(*(const double *) &b[i]);

/* Multiply elements together, producing four products */
c3_c2_dbl = _mpy2(a3_a2, b3_b2);
c1_c0_dbl = _mpy2(a1_a0, b1_b0);

/* Add each of the four products to the accumulation. */
sum += _hi(c3_c2_dbl);
sum += _lo(c3_c2_dbl);
sum += _hi(c1_c0_dbl);
sum += _lo(c1_c0_dbl);

}

return sum;
}
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While this code is fully vectorized, it still can be improved. The kernel itself is
performing two LDDWs, two MPY2, four ADDs, and one Branch. Because of
the large number of ADDs, the loop cannot fit in a single cycle, and so the ’C64x
datapath is not used efficiently.

The way to improve this is to combine some of the multiplies with some of the
adds. The ’C64x family of _dotp intrinsics provides the answer here.
Figure 8–18 illustrates how the _dotp2 intrinsic operates. Other _dotp intrin-
sics operate similarly.

Figure 8–18. Graphical Representation of the _dotp2 Intrinsic c = _dotp2(b, a)

a_hi a_loa

b b_hi b_lo

* *

32–bit register

32–bit register

a_hi * b_hi a_lo * b_lo

16 bit 16 bit

32 bit 32 bit

add

a_hi * b_hi + a_lo * b_loc c = _dotp2(b, a)

32 bit

This operation exactly maps to the operation the dot product kernel performs.
The modified version of the kernel absorbs two of the four ADDs into _dotp in-
trinsics. The result is shown as Example 8–11. Notice that the variable c has
been eliminated by summing the results of the _dotp intrinsic directly.
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Example 8–10. Vectorized Form of the Dot Product Kernel

int dot_prod(const short *restrict a, const short *restrict b,
                 short *restrict c, int len)

{
int i;
int      sum = 0;                  /* 32–bit accumulation         */
unsigned a3_a2, a1_a0;             /* Packed 16–bit values        */
unsigned b3_b2, b1_b0;             /* Packed 16–bit values        */

for (i = 0; i < len; i += 4)
{

a3_a2 = _hi(*(const double *) &a[i]);
a1_a0 = _lo(*(const double *) &a[i]);

b3_b2 = _hi(*(const double *) &b[i]);
b1_b0 = _lo(*(const double *) &b[i]);

/* Perform dot–products on pairs of elements, totalling the 
results in the accumulator. */

sum += _dotp2(a3_a2, b3_b2);
sum += _dotp2(a1_a0, b1_b0);

}

return sum;
}

At this point, the code takes full advantange of the new features that the ’C64x
provides. In the particular case of this kernel, no further optimization should
be necessary. The tools produce an optimal single cycle loop, using the com-
piler version that was available at the time this book was written.

Example 8–11. Final Assembly Code for Dot–Product Kernel’s Inner Loop

L2:
   [ B0]   SUB     .L2     B0,1,B0           ; 
|| [!B0]   ADD     .S2     B8,B7,B7          ; |10| 
|| [!B0]   ADD     .L1     A7,A6,A6          ; |10| 
||         DOTP2   .M2X    B5,A5,B8          ; @@@@|10| 
||         DOTP2   .M1X    B4,A4,A7          ; @@@@|10| 
|| [ A0]   BDEC    .S1     L2,A0             ; @@@@@
||         LDDW    .D1T1   *A3++,A5:A4       ; @@@@@@@@@|10| 
||         LDDW    .D2T2   *B6++,B5:B4       ; @@@@@@@@@|10|
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8.2.7.2 Combining Operations in the Vector Complex Multiply Kernel

The Vector Complex Multiply kernel that was originally shown in Example 8–4
can be optimized with a technique similar to the one that used with the Dot
Product kernel in Section 8.2.4.1. First, the loads and stores are vectorized in
order to bring data in more efficiently. Next, operations are combined together
into intrinsics to make full use of the machine.

Example 8–12 illustrates the vectorization step. For details, consult the earlier
examples, such as the Vector Sum. The complex multiplication step itself has
not yet been optimized at all.
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Example 8–12. Vectorized form of the Vector Complex Multiply Kernel

void vec_cx_mpy(const short *restrict a, const short *restrict b,
                    short *restrict c, int len, int shift)
    {
        int i;
        unsigned a3_a2, a1_a0;             /* Packed 16–bit values        */
        unsigned b3_b2, b1_b0;             /* Packed 16–bit values        */
        short    a3, a2, a1, a0;           /* Separate 16–bit elements    */
        short    b3, b2, b1, b0;           /* Separate 16–bit elements    */
        short    c3, c2, c1, c0;           /* Separate 16–bit results     */
        unsigned c3_c2, c1_c0;             /* Packed 16–bit values        */

        for (i = 0; i < len; i += 4)
        {
            /* Load two complex numbers from the a[] array.               */
            /* The complex values loaded are represented as ’a3 + a2 * j’ */
            /* and ’a1 + a0 * j’.  That is, the real components are a3    */
            /* and a1, and the imaginary components are a2 and a0.        */
            a3_a2 = _hi(*(const double *) &a[i]);
            a1_a0 = _lo(*(const double *) &a[i]);

            /* Load two complex numbers from the b[] array.               */
            b3_b2 = _hi(*(const double *) &b[i]);
            b1_b0 = _lo(*(const double *) &b[i]);

            /* Separate the 16–bit coefficients so that the complex       */
            /* multiply may be performed.  This portion needs further     */
            /* optimization.                                              */
            a3 = ((signed) a3_a2) >> 16;
            a2 = _ext(a3_a2, 16, 16);
            a1 = ((signed) a1_a0) >> 16;
            a0 = _ext(a1_a0, 16, 16);

            b3 = ((signed) a3_a2) >> 16;
            b2 = _ext(a3_a2, 16, 16);
            b1 = ((signed) a1_a0) >> 16;
            b0 = _ext(a1_a0, 16, 16);

            /* Perform the complex multiplies using 16x16 multiplies.     */
            c3 = (b3 * a2 + b2 * a3) >> 16;    
            c2 = (b3 * a3 – b2 * a2) >> 16;

            c1 = (b1 * a0 + b0 * a1) >> 16;    
            c0 = (b1 * a1 – b0 * a0) >> 16;

            /* Pack the 16–bit results into 32–bit words.                 */
            c3_c2 = _pack2(c3, c2);
            c1_c0 = _pack2(c1, c0);

            /* Store the results. */
            *(double *) &c[i] = _itod(c3_c2, c1_c0);
        }
    }
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Example 8–12 still performs the complex multiply as a series of discrete steps
once the individual elements are loaded. The next optimization step is to com-
bine some of the multiplies and adds/subtracts into _dotp and _dotpn intrinsics
in a similar manner to the Dot Product example presented earlier.

The real component of each result is calculated by taking the difference be-
tween the product of the real components of both input and the imaginary com-
ponents of both inputs. Because the real and imaginary components for each
input array are laid out the same, the _dotpn intrinsic can be used to calculate
the real component of the output. Figure 8–19 shows how this flow would work.

Figure 8–19. The _dotpn2 Intrinsic Performing Real Portion of Complex Multiply.

a_real a_imaginarya

b b_real b_imaginary

* *

32–bit register

32–bit register

a_real * b_real a_imaginary * b_imaginary

16 bit 16 bit

32 bit 32 bit

sub

a_real * b_real – a_imag * b_imagc c = _dotpn2(b, a)

32 bit

The calculation for the result’s imaginary component provides a different prob-
lem. As with the real component, the result is calculated from two products that
are added together. A problem arises, though, because it is necessary to multi-
ply the real component of one input with the imaginary component of the other
input, and vice versa. None of the ’C64x intrinsics provide that operation direct-
ly given the way the data is currently packed.
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The solution is to reorder the halfwords from one of the inputs, so that the imag-
inary component is in the upper halfword and the real component is in the lower
halfword. This is accomplished by using the _packlh2 intrinsic to reorder the
halves of the word. Once the half–words are reordered on one of the inputs,
the _dotp intrinsic provides the appropriate combination of multiplies with an
add to provide the imaginary component of the output.

Figure 8–20. _packlh2 and _dotp2 Working Together.
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* *
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add

a_imag * b_real + a_real * b_imagc c = _dotp2 (b, _packl2(a, a))

32 bit

a’ = _packlh2(a, a);

a’ Imaginary Real

ImaginaryReal

Once both the real and imaginary components of the result are calculated, it
is necessary to convert the 32-bit results to 16-bit results and store them.  In
the original code, the 32-bit results were shifted right by 16 to convert them to
16-bit results.  These results were then packed together with _pack2 for stor-
ing. Our final optimization replaces this shift and pack with a single _packh2.
Example 8–13 shows the result of these optimizations.
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Example 8–13. Vectorized form of the Vector Complex Multiply

    void vec_cx_mpy(const short *restrict a, const short *restrict b,
                    short *restrict c, int len, int shift)
    {
        int i;
        unsigned a3_a2, a1_a0;             /* Packed 16–bit values        */
        unsigned b3_b2, b1_b0;             /* Packed 16–bit values        */
        int      c3,c2, c1,c0;             /* Separate 32–bit results     */
        unsigned c3_c2, c1_c0;             /* Packed 16–bit values        */

        for (i = 0; i < len; i += 4)
        {
            /* Load two complex numbers from the a[] array.               */
            /* The complex values loaded are represented as ’a3 + a2 * j’ */
            /* and ’a1 + a0 * j’.  That is, the real components are a3    */
            /* and a1, and the imaginary components are a2 and a0.        */
            a3_a2 = _hi(*(const double *) &a[i]);
            a1_a0 = _lo(*(const double *) &a[i]);

            /* Load two complex numbers from the b[] array.               */
            b3_b2 = _hi(*(const double *) &b[i]);
            b1_b0 = _lo(*(const double *) &b[i]);

            /* Perform the complex multiplies using _dotp2/_dotpn2.      */
            c3 = _dotpn2(b3_b2, a3_a2);                  /* Real         */
            c2 = _dotp2 (b3_b2, _packlh2(a3_a2, a3_a2)); /* Imaginary    */

            c1 = _dotpn2(b1_b0, a1_a0);                  /* Real         */
            c0 = _dotp2 (b1_b0, _packlh2(a1_a0, a1_a0)); /* Imaginary    */

            /* Pack the 16–bit results from the upper halves of the      */
            /* 32–bit results into 32–bit words.                         */
            c3_c2 = _packh2(c3, c2);
            c1_c0 = _packh2(c1, c0);

            /* Store the results. */
            *(double *) &c[i] = _itod(c3_c2, c1_c0);
        }
    }

As with the earlier examples, this kernel now takes full advantage of the
packed data processing features that the ’C64x provides.  More general opti-
mizations can be performed as described in Chapter 7 to further optimize this
code.
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8.2.8 Non-Aligned Memory Accesses

In addition to traditional aligned memory access methods, the ’C64x also pro-
vides intrinsics for non-aligned memory accesses. Aligned memory accesses
are restricted to an alignment boundary that is determined by the amount of
data being accessed. For instance, a 64-bit load must read the data from a
location at a 64-bit boundary. Non-aligned access intrinsics relax this restric-
tion, and can access data at any byte boundary.

There are a number of tradeoffs between aligned and non-aligned access
methods. Table 8–6 lists the differences between both methods.

Table 8–6. Comparison Between Aligned and Non–Aligned Memory Accesses

Aligned Non–Aligned

Data must be aligned on a boundary
equal to its width.

Data may be aligned on any byte
boundary.

Can read or write bytes, half-words,
words, and double-words.

Can only read or write words and
double-words.

Up to two accesses may be issued per
cycle, for a peak bandwidth of 128 bits/
cycle.

Only one non-aligned access may be
issued per cycle, for a peak bandwidth
of 64 bits/cycle.

Bank conflicts may occur. No bank conflict possible, because no
other memory access may occur in par-
allel.

Because the ’C64x can only issue one non-aligned memory access per cycle,
programs should focus on using aligned memory accesses whenever pos-
sible. However, certain classes of algorithms are difficult or impossible to fit
into this mold when applying packed-data optimizations. For example, con-
volution-style algorithms such as filters fall in this category, particularly when
the outer loop cannot be unrolled to process multiple outputs at one time.
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8.2.8.1 Using Non-Aligned Memory Access Intrinsics

Non-aligned memory accesses are generated using the _mem4() and
_memd8() intrinsics. These intrinsics generate a non-aligned reference which
may be read or written to, much like an array reference. Example 8–14 below
illustrates reading and writing via these intrinsics.

Example 8–14. Non–aligned Memory Access With _mem4 and _memd8

char   a[1000];  /* Sample array */
    double d;

    /* Store four bytes at a[9] through a[12] */
    _mem4((void*) &a[9]) = 0x12345678;   

    /* Load eight bytes from a[115] through a[122] */
    d = _memd8((void*) &a[115]);

It is easy to modify code to use non-aligned accesses. Example 8–15 below
shows the Vector Sum from Example 8–6 rewritten to use non-aligned
memory accesses. As with ordinary array references, the compiler will opti-
mize away the redundant references.

Example 8–15. Vector Sum Modified to use Non–Aligned Memory Accesses

void vec_sum(const short *restrict a, const short *restrict b,
                 short *restrict c, int len)
    {
        int i;
        unsigned a3_a2, a1_a0;
        unsigned b3_b2, b1_b0;
        unsigned c3_c2, c1_c0;

        for (i = 0; i < len; i += 4)
        {
            a3_a2 = _hi(_memd8((void*) &a[i]));
            a1_a0 = _lo(_memd8((void*) &a[i]));

            b3_b2 = _hi(_memd8((void*) &b[i]));
            b1_b0 = _lo(_memd8((void*) &b[i]));
        
            c3_c2 = _add2(b3_b2, a3_a2);
            c1_c0 = _add2(b1_b0, a1_a0);

            _memd8((void*) &c[i]) = _itod(c3_c2, c1_c0);
        }
    }
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8.2.8.2 When to Use Non-Aligned Memory Accesses
As noted earlier, the ’C64x can provide 128 bits/cycle bandwidth with aligned
memory accesses, and 64 bits/cycle bandwidth with non-aligned memory ac-
cesses. Therefore, it is important to use non–aligned memory accesses in
places where they provide a true benefit over aligned memory accesses. Gen-
erally, non-aligned memory accesses are a win in places where they allow a
routine to be vectorized, where aligned memory accesses could not. These
places can be broken down into several cases:

� Generic routines which cannot impose alignment,

� Single sample algorithms which update their input or output pointers by
only one sample

� Nested loop algorithms where outer loop cannot be unrolled, and

� Routines which have an irregular memory access pattern, or whose ac-
cess pattern is data-dependent and not known until run time.

An example of a generic routine which cannot impose alignment on routines
that call it would be a library function such as memcpy or strcmp. Single-sam-
ple algorithms include adaptive filters which preclude processing multiple out-
puts at once. Nested loop algorithms include 2-D convolution and motion es-
timation. Data-dependent acccess algorithms include motion compensation,
which must read image blocks from aribitrary locations in the source image.

In each of these cases, it is extremely difficult to transform the problem into one
which uses aligned memory accesses while still vectorizing the code. Often,
the result with aligned memory accesses is worse than if the code were not
optimized for packed data processing at all. So, for these cases, non-aligned
memory accesses are a win.

In contrast, non-aligned memory accesses should not be used in more general
cases where they are not specifically needed. Rather, the program should be
structured to best take advantage of aligned memory accesseswith a packed
data processing flow. The following checklist should help.

� Use signed short or unsigned char data types for arrays where possible.
These are the types for which the ’C64x provides the greatest support.

� Place arrays on double-word boundaries, using #pragma DATA_ALIGN.
This allows the program to use LDDW and STDW to access the array, pro-
viding up to 128 bit/cycle bandwidth for accesing the array.

� Round loop counts, numbers of samples, and so on to multiples of 4 or 8
where possible. This allows the inner loop to be unrolled more readily to
take advantage of packed data processing.

� In nested loop algorithms, unroll outer loops to process multiple output
samples at once. This allows packed data processing techniques to be ap-
plied to elements that are indexed by the outer loop.
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8.2.9 Performing Conditional Operations with Packed Data

The ’C64x provides a set of operations that are intended to provide conditional
data flow in code that operates on packed data.  These operations make it pos-
sible to avoid breaking the packed data flow with unpacking code and tradition-
al ’if’ statements.

Common conditional operations, such as maximum, minimum and absolute
value are addressed directly with their own specialized intrinsics. In addition
to these specific operations, more generalized compare and select operations
can be constructed using the packed compare intrinsics, _cmpXX2 and
_cmpXX4, in conjunction with the expand intrinsics, _xpnd2 and _xpnd4.

The packed compare intrinsics compare packed data elements, producing a
small bitfield which describes the results of the independent comparisons. For
_cmpeq2, _cmpgt2, and _cmplt2, the intrinsic returns a two bit field containing
the results of the two separate comparisons. For _cmpeq4, _cmpgtu4, and
_cmpltu4, the intrinsic returns a four bit field containing the results of the four
separate comparisons.  In both sets of intrinsics, a 1 bit signifies that the tested
condition is true, and a 0 signifies that it is false. Figure 8–21 and Figure 8–22
illustrate how these compare intrinsics work.

Figure 8–21. Graphical Illustration of _cmpXX2 Intrinsics
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Figure 8–22. Graphical Illustration of _cmpXX4 Intrinsics
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The expand intrinsics work from a bitfield such as the bitfield returned by the
compare intrinsics. The _xpnd2 and _xpnd4 intrinsics expand the lower 2 or
4 bits of a word to fill the entire 32-bit word of the result. The _xpnd2 intrinsic
expands the lower two bits of the input to two half–words, whereas _xpnd4 ex-
pands the lower four bits to four bytes. The expanded output is suitable for use
as a mask, for instance, for selecting values based on the result of a compari-
son. Figure 8–23 and Figure 8–24 illustrate.



Packed-Data Processing on the ’C64x

 8-42

Figure 8–23. Graphical Illustration of _xpnd2 Intrinsic
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Figure 8–24. Graphical Illustration of _xpnd4 Intrinsic
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Example 8–16 illustrates an example that can benefit from the packed
compare and expand intrinsics in action. The Clear Below Threshold kernel
scans an image of 8-bit unsigned pixels, and sets all pixels that are below a
certain threshold to 0.

Example 8–16. Clear Below Threshold Kernel

 void clear_below_thresh(unsigned char *restrict image, int count, 
                            unsigned char threshold)
    {
        int i;
  
        for (i = 0; i < count; i++)
        {
            if (image[i] <= threshold)
                image[i] = 0;
        }
    }

Vectorization techniques are applied to the code (as described in Section 8.2),
giving the result shown in Example 8–17. The _cmpgtu4() intrinsic compares
against the threshold values, and the _xpnd4() intrinsic generates a mask for
setting pixels to 0. Note that the new code has the restriction that the input
image must be double-word aligned, and must contain a multiple of 8 pixels.
These restrictions are reasonable as common image sizes have a multiple of
8 pixels.
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Example 8–17. Clear Below Threshold Kernel, Using _cmpgtu4 and _xpnd4 Intrinsics

    void clear_below_thresh(unsigned char *restrict image, int count, 
                            unsigned char threshold)
    {
        int i;
        unsigned t3_t2_t1_t0;               /* Threshold (replicated)   */
        unsigned p7_p6_p5_p4, p3_p2_p1_p0;  /* Pixels                   */
        unsigned c7_c6_c5_c4, c3_c2_c1_c0;  /* Comparison results       */
        unsigned x7_x6_x5_x4, x3_x2_x1_x0;  /* Expanded masks           */

        /* Replicate the threshold value four times in a single word */
        temp        = _pack2(threshold, threshold); 
        t3_t2_t1_t0 = _packl4(temp, temp);
  
        for (i = 0; i < count; i += 8)
        {
            /* Load 8 pixels from input image (one double–word).        */
            p7_p6_p5_p4 = _hi(*(double*) &image[i]);
            p3_p2_p1_p0 = _lo(*(double*) &image[i]);

            /* Compare each of the pixels to the threshold.             */
            c7_c6_c5_c4 = _cmpgtu4(p7_p6_p5_p4, t3_t2_t1_t0);
            c3_c2_c1_c0 = _cmpgtu4(p3_p2_p1_p0, t3_t2_t1_t0);

            /* Expand the comparison results to generate a bitmask.     */
            x7_x6_x5_x4 = _xpnd4(c7_c6_c5_c4);
            x3_x2_x1_x0 = _xpnd4(c3_c2_c1_c0);
            
            /* Apply mask to the pixels.  Pixels that were less than or */
            /* equal to the threshold will be forced to 0 because the   */
            /* corresponding mask bits will be all 0s. The pixels that  */
            /* were greater will not be modified, because their mask    */
            /* bits will be all 1s.                                     */
            p7_p6_p5_p4 = p7_p6_p5_p4 & x7_x6_x5_x4;
            p3_p2_p1_p0 = p3_p2_p1_p0 & x3_x2_x1_x0;

            /* Store the thresholded pixels back to the image.          */
            *(double*) &image[i] = _itod(p7_p6_p5_p4, p3_p2_p1_p0);
        }
    }
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8.3 Linear Assembly Considerations

The ’C64x supports linear assembly programming via the C6000 Assembly
Optimizer. The operation of the Assembly Optimizer is described in detail in
the Optimizing C/C++ Compiler User’s Guide. This section covers ’C64x spe-
cific aspects of linear assembly programming.

8.3.1 Using BDEC and BPOS in Linear Assembly

The ’C64x provides two new instructions, BDEC and BPOS, which are de-
signed to reduce codesize in loops, as well as to reduce pressure on predica-
tion registers. The BDEC instruction combines a decrement, test, and branch
into a single instruction. BPOS is similar, although it does not decrement the
register. For both, these steps are performed in the following sequence.

� Test the loop register to see if it is negative. If it is negative, no further action
occurs. The branch is not taken and the loop counter is not updated.

� If the loop counter was not initially negative, decrement the loop counter
and write the new value back to the register file. (This step does not occur
for BPOS .)

� If the loop counter was not initially negative, issue the branch. Code will
begin executing at the branch’s destination after the branch’s delay slots.
From linear assembly, the branch appears to occur immediately, since lin-
ear assembly programming hides delay slots from the programmer.

This sequence of events causes BDEC to behave somewhat differently than
a separate decrement and predicated branch. First, the decision to branch oc-
curs before the decrement. Second, the decision to branch is based on wheth-
er the number is negative, rather than whether the number is zero. Together,
these effects require the programmer to adjust the loop counter in advance of
a loop.

Consider Example 8–18. In this C code, the loop iterates for count  iterations,
adding 1 to iters each iteration. After the loop, iters contains the number of
times the loop iterated.
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Example 8–18. Loop Trip Count in C

    int count_loop_iterations(int count)
    {
        int iters, i;

        iters = 0;

        for (i = count; i > 0; i––)
            iters++;

        return iters;
    }

Without BDEC and BPOS, this loop would be written as shown in
Example 8–19 below. This example uses branches to test whether the loop
iterates at all, as well as to perform the loop iteration itself. This loop iterates
exactly the number of times specified by the argument ’count’.

Example 8–19. Loop Trip Count in Linear Assembly without BDEC

        .global _count_loop_iterations
_count_loop_iterations .cproc count
        .reg    i, iters, flag

        ZERO    iters               ; Initialize our return value to 0.

        CMPLT   count,  1,  flag
[flag]  B       does_not_iterate    ; Do not iterate if count

        MV      count,  i           ; i = count
loop:   .trip   1                   ; This loop is guaranteed to iterate at 
                                    ; least once.

        ADD     iters,  1,  iters   ; iters++
        SUB     i,      1,  i       ; i––
 [i]    B       loop                ; while (i > 0);

does_not_iterate:

        .return iters                   ; Return our number of iterations.
        .endproc

Using BDEC , the loop is written similarly. However, the loop counter needs to
be adjusted, since BDEC terminates the loop after the loop counter becomes
negative. Example 8–20 illustrates using BDEC to conditionally execute the
loop, as well as to iterate the loop. In the typical case, the loop count needs
to be decreased by 2 before the loop. The SUB and BDEC before the loop per-
form this update to the loop counter.
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Example 8–20. Loop Trip Count Using BDEC

        .global _count_loop_iterations
_count_loop_iterations .cproc count
        .reg    i, iters

        ZERO    iters               ; Initialize our return value to 0.

        SUB     count,  1,  i       ; i = count – 1;
        BDEC    loop,   i           ; Do not iterate if count < 1.

does_not_iterate:
        .return iters               ; Loop does not iterate, just return 0.

loop:   .trip   1                   ; This loop is guaranteed to iterate at 
                                    ; least once.

        ADD     iters,  1,  iters   ; iters++
        BDEC    loop,   i           ; while (i–– >= 0);

        .return iters               ; Return our number of iterations.
        .endproc

Another approach to using BDEC is to allow the loop to execute extra itera-
tions, and then compensate for these iterations after the loop. This is particu-
larly effective in cases where the cost of the conditional flow before the loop
is greater than the cost of executing the body of the loop, as in the example
above. Example 8–21 shows one way to apply this modification.

Example 8–21. Loop Tip Count Using BDEC With Extra Loop Iterations

        .global _count_loop_iterations
_count_loop_iterations .cproc count
        .reg    i, iters

        MVK     –1,     iters       ; Loop executes exactly 1 extra iteration,
                                    ; so start with the iteration count == –1.

        SUB     count,  1,  i       ; Force ”count==0” to iterate exactly once.

loop:   .trip   1                   ; This loop is guaranteed to iterate at 
                                    ; least once.

        ADD     iters,  1,  iters   ; iters++
        BDEC    loop,   i           ; while (i–– >= 0);

        .return iters               ; Return our number of iterations.
        .endproc
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8.3.1.1 Function Calls and ADDKPC in Linear Assembly

The ’C64x provides a new instruction, ADDKPC , which is designed to reduce
codesize when making function calls. This new instruction is not directly ac-
cessible from Linear Assembly. However, Linear Assembly provides the func-
tion call directive, .call, and this directive makes use of ADDKPC. The .call di-
rective is explained in detail in the TMS320C6000 Optimizing C/C++ Compiler
User’s Guide.

Example 8–22 illustrates a simple use of the .call directive. The Assembly Op-
timizer issues an ADDKPC as part of the function call sequence for this .call,
as shown in the compiler output in Example 8–23.

Example 8–22. Using the .call Directive in Linear Assembly

       .data
hello   .string ”Hello World”, 0

        .text
        .global _puts
        .global _main

_main   .cproc
        .reg    pointer

loop:
        MVKL    hello,  pointer     ; Generate a 32–bit pointer to the
        MVKH    hello,  pointer     ; phrase ”Hello World”.

        .call   _puts(pointer)      ; Print the string ”Hello World”.

        B       loop                ; Keep printing it.

        .endproc

Example 8–23. Compiler Output Using ADDKPC

loop:    
;    .call   _puts(pointer)    ; Print the string ”Hello World”.
      B       .S1   _puts      ; |15| 
      MVKL    .S1   hello,A4   ; |12|  Generate a 32–bit pointer to the
      ADDKPC  .S2   RL0,B3,2   ; |15| 
      MVKH    .S1   hello,A4   ; |13|  phrase ”Hello World”.
RL0:  ; CALL OCCURS            ; |15|
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8.3.1.2 Using .mptr and .mdep With Linear Assembly on the ’C64x

The Assembly Optimizer supports the .mptr and .mdep directives on the
’C64x. These directives allow the programmer to specify the memory access
pattern for loads and stores, as well as which loads and stores are dependent
on each other. Section 6.2, Assembly Optimizer Options and Directives, de-
scribes these directives in detail. This section describes the minor differences
in the behavior of the .mptr directive on ’C64x vs. other C6000 family members.

Most ’C64x implementations will have different memory bank structure than
existing ’C62x implementations in order to support the wider memory ac-
cesses that the ’C64x provides. Refer to the TMS320C6000 Peripherals Ref-
erence Guide for specific information on the part that you are using.

Additionally, the ’C64x’s non-aligned memory accesses do not cause bank
conflicts. This is due to the fact that no other memory access can execute in
parallel with a non-aligned memory access. As a result, the.mptr directive has
no effect on non-aligned load and store instructions.
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Appendix A

FeedbackSolutions

This appendix is provided as a quick reference to techniques that can be used
to optimize loops, and in most cases, refers you to specific sections within this
book for more detail.
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A.1 Loop Disqualification Messages

Bad Loop Structure

Description

This error is very rare and can stem from the following:

� An asm statement inserted in the C code innerloop.

� Parallel instructions being used as input to the Linear Assembly Optimizer.

� Complex control flow such as GOTO statements and breaks.

Solution

Remove any asm statements, complex control flow or parallel instructions as
input to linear assembly.

Loop Contains a Call

Description

Sometimes the compiler may not be able to inline a function call that is in a
loop.  Because the compiler could not inline the function call, the loop could
not be software pipelined.

Solution

If the caller and the callee are C or C++, use –pm and –op2.  See the
TMS320C6000 Opimizing C/C++ Compiler User’s Guide for more information
on the correct usage of –op2. Do not use –oi0, which disables automatic inlin-
ing.

Add the inline keyword to the callee’s function definition.
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Too Many Instructions

Loops that are too big typically will not schedule due to too many registers
needed and cause a large compilation time in the compiler. The limit on the
number of instructions is variable.

Solution

Use intrinsics in C code to select more efficient ’C6000 instructions.

Write code in linear assembly to pick exact ’C6000 instruction to be executed.

For more information...

See section 3.4.1, Using Intrinsics, on page 3-18.

See Chapter 7, Optimizing Assembly Code via Linear Assembly.

Software Pipelining Disabled

Software pipelining has been disabled by a command–line option. Pipelining will
be turned off when using the –mu option, not using –o2/–o3, or using – ms2/–ms3.
 

Uninitialized Trip Counter

The trip counter may not have been set to an initial value.

Suppressed to Prevent Code Expansion

Software pipelining may be suppressed because of the –ms1 flag. When the
–ms1 flag is used, software pipelining is disabled in less promising cases to
reduce code size.  To enable pipelining, use –ms0 or omit the –ms flag alto-
gether.

Loop Carried Dependency Bound Too Large

If the loop has complex loop control, try –mh according to the recommenda-
tions in the TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

Cannot Identify Trip Counter

The loop control is too complex. Try to simplify the loop.
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A.2 Pipeline Failure Messages

Address Increment Too Large

Description

One thing the compiler does when software pipelining is to allow reordering
of all loads and stores occurring from the same array or pointer. This allows
for maximum flexibility in scheduling. Once a schedule is found, the compiler
then goes back and adds the appropriate offsets and increment/decrements
to each load and store. Sometimes, the loads and/or stores end up being offset
too far from each other after reordering (the limit for standard load pointers is
+/– 32) . If this happens, the best bet is to restructure the loop so that the point-
ers are closer together or rewrite the pointers to use register offsets that are
precomputed.

Solution

Modify code so that the memory offsets are closer.

Cannot Allocate Machine Registers

Description

After software pipelining and finding a valid schedule, the compiler must allo-
cate all values in the loop to specific machine registers (A0–A15 and B0–B15
for the ’C62x and ’C67x, or A0–A31 and B0–B31 for the ’C64x). Sometimes
the loop schedule found simply requires more registers than the ’C6000 has
available and thus software pipelining that particular ii is not possible. The ana-
lyzing feedback example shows:

ii = 12 Cannot allocate machine registers

Regs Live Always : 1/5 (A/B–side)

Max Regs Live : 14/19

Max Cond Regs Live : 1/0

Regs Live Always  refers to the number of registers needed for variables live
every cycle in the loop. Data loaded into registers outside the loop and read
inside the loop will fall into this category.

Max Regs Live  refers to the maximum number of variable live on any one
cycle in the loop. If there are 33 variables live on one of the cycles inside the
loop, a minimum of 33 registers is necessary and this will not be possible with
the 32 registers available on the C62/C67 cores. 64 registers are available on
the ’C64x core. In addition, this is broken down between A and B side, so if
there is uneven partitioning with 30 values and there are 17 on one side and
13 on the other, the same problem will exist.
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Max Cond Regs  Live  tells us if there are too many conditional values needed
on a given cycle. The ’C62x/’C67x cores have 2 A side and 3 B side condition
registers available. The ’C64x core has 3 A side and 3 B side condition regis-
ters available.

Solution

Try splitting the loop into two separate loops. Repartition if too many instruc-
tions on one side.

For loops with complex control, try the –mh option.

Use symbolic register names instead of machine registers (A0–A15 and
B0–B15 for ’C62x and ’C67x, or A0–A31 and B0–B31 for ’C64x).

For More Information...

See section 6.9, Loop Unrolling (in Assembly), on page 6-94.

See section 3.4.3.4, Loop Unrolling (in C), on page 3-45.

TMS320C6000 C/C++ Compiler User’s Guide

Cycle Count Too High. Not Profitable

Description

In rare cases, the iteration interval of a software pipelined loop is higher than
a non-pipelined list scheduled loop.  In this case, it is more efficient to execute
the non-software pipelined version.

Solution

Split into multiple loops or reduce the complexity of the loop if possible.

Unpartition/repartition the linear assembly source code.

Add const and restrict keywords where appropriate to reduce dependences.

For loops with complex control, try the –mh option.

Probably best modified by another technique (i.e. loop unrolling).

Modify the register and/or partition constraints in linear assembly.

For more information...

See section 6.9, Loop Unrolling, on page 6-94.

TMS320C6000 C/C++ Compiler User’s Guide
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Did Not Find Schedule

Description

Sometimes, due to a complex loop or schedule, the compiler simply cannot
find a valid software pipeline schedule at a particular iteration interval.

Solution

Split into multiple loops or reduce the complexity of the loop if possible.

Unpartition/repartition the linear assembly source code.

Probably best modified by another technique (i.e. loop unrolling).

Modify the register and/or partition constraints in linear assembly.

For more information...

See section 6.9, Loop Unrolling, on page 6-94.

Iterations in Parallel > Max. Trip Count

Description

Not all loops can be profitably pipelined. Based on the available information
on the largest possible trip count, the compiler estimates that it will always be
more profitable to execute a non-pipelined version than to execute the pipe-
lined version, given the schedule that it found at the current iteration interval.

Solution

Probably best optimized by another technique (i.e. unroll the loop completely).

For more information...

See section 6.9, Loop Unrolling (in Assembly), on page 6-94.

See section 3.4.3.4, Loop Unrolling (in C), on page 3-45.

See section 3.4.3, Software Pipelining, on page 3-41.

Speculative Threshold Exceeded

Description

It would be necessary to speculatively load beyond the threshold currently
specified by the –mh option.

Solution

Increase the –mh threshold as recommended in the software pipeline feed-
back located in the assembly file.
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Iterations in Parallel > Min. Trip Count

Description

Based on the available information on the minimum trip count, it is not always
safe to execute the pipelined version of the loop. Normally, a redundant loop
would be generated. However, in this case, redundant loop generation has
been suppressed via the –ms0/–ms1 option.

Solution

Add MUST_ITERATE pragma or .trip to provide more information on the mini-
mum trip count

If adding –mh or using a higher value of –mhn could help, try the following
suggestions:

� Use –pm program level optimization to gather more trip count information.

� Use the MUST_ITERATE pragma or the .trip directive to provide minimum
trip count information.

For more information...

See section 3.2.2.3, Performing Program Level Optimization (–pm Option), on
page 3-14.

See section 3.4.3.3, Communicating Trip Count Information to the Compiler,
on page 3-44.

See section 6.2.5, The .trip Directive, on page 6-8.

Register is Live Too Long

Description

Sometimes the compiler finds a valid software pipeline schedule but one or
more of the values is live too long. Lifetime of a register is determined by the
cycle a value is written into it and by the last cycle this value is read by another
instruction. By definition, a variable can never be live longer than the ii of the
loop, because the next iteration of the loop will overwrite that value before it
is read.

After this message, the compiler prints out a detailed description of which val-
ues are live to long:

ii = 11 Register is live too long
|72| –> |74|
|73| –> |75|
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The numbers 72, 73, 74, and 75 correspond to line numbers and they can be
mapped back to the offending instructions.

Solution

Use the –mx option for both C code and linear assembly.

Write linear assembly and insert MV instructions to split register lifetimes that
are live–too–long.

For more information...

See section 6.10.4.1, Split–Join–Path Problems, on page 6-104.

Too Many Predicates Live on One Side

Description

The C6000 has predicate, or conditional, registers available for use with condi-
tional instructions. There are 5 predicate registers on the ’C62x and ’C67x, and
6 predicate registers on the ’C64x. There are two or three on the A side and
three on the B side. Sometimes the particular partition and schedule combina-
tion, requires more than these available registers.

Solution

Try splitting the loop into two separate loops.

If multiple conditionals are used in the loop, allocation of these conditionals is
the reason for the failure. Try writing linear assembly and partition all instruc-
tions, writing to condition registers evenly between the A and B sides of the
machine. For the ’C62x and ’C67x, if there is an uneven number, put more on
the B side, since there are 3 condition registers on the B side and only 2 on
the A side.

Too Many Reads of One Register

Description

The ’C62x and ’C67x cores can read the same register a maximum of 4 times
per cycle. The ’C64x core can read the same register any number of times per
cycle. If the schedule found happens to produce code where a single register
is read more than 4 times in a given cycle, the schedule is invalidated. This
problem is very rare and only occurs on the ’C67x due to some floating point
instructions that have multiple cycle reads.
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Solution

Split into multiple loops or reduce the complexity of the loop if possible.

Unpartition/repartition the linear assembly source code.

Probably best modified by another technique (i.e. loop unrolling).

Modify the register and/or partition constraints in linear assembly.

For more information...

See section 6.9, Loop Unrolling (in Assembly), on page 6-94.

See section 3.4.3.4, Loop Unrolling (in C), on page 3-45.

Trip var. Used in Loop – Can’t Adjust Trip Count

Description

If the loop counter (named trip counter because of the number of trips through
a loop) is modified within the body of the loop, it typically cannot be converted
into a downcounting loop (needed for software pipelining on the ’C6000). If
possible, rewrite the loop to not modify the trip counter by adding a separate
variable to be modified.

The fact that the loop counter is used in the loop is actually determined much
earlier in the loop qualification stage of the compiler. Why did the compiler try
to schedule this anyway? The reason has to do with the –mh option. This op-
tion allows for extraneous loads and facilitates epilog removal. If the epilog was
successfully removed, the loop counter can sometimes be altered in the loop
and still allow software pipelining. Sometimes, this isn’t possible after schedul-
ing and thus the feedback shows up at this stage.

Solution

Replicate the trip count variable and use the copy inside the loop so that the
trip counter and the loop reference separate variables.

Use the –mh option.

For more information...

See section 3.4.3.6, What Disqualifies a Loop From Being Software Pipelined,
on page 3-50.
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A.3 Investigative Feedback

Loop Carried Dependency Bound is Much Larger Than Unpartitioned Resource Bound

Description

If the loop carried dependency bound is much larger than the unpartitioned re-
source bound, this can be an indicator that there is a potential memory alias
disambiguation problem. This means that there are two pointers that may or
may not point to the same location, and thus, the compiler must assume they
might. This can cause a dependency (often between the load of one pointer
and the store of another) that does not really exist. For software pipelined
loops, this can greatly degrade performance.

Solution

Use –pm program level optimization to reduce  memory pointer aliasing.

Add restrict declarations to all pointers passed to a function whose objects do
not overlap.

Use –mt option to assume no memory pointer aliasing.

Use the .mdep and .no_mdep assembly optimizer directives.

If the loop control is complex, try the -mh option.

For More Information...

See section 3.2.2.3, Performing Program–Level Optimization (–pm Option),
on page 3-14.

See section 3.2.2.1, The const Keyword, on page 3-9.

See section 3.2.2.2, The restrict Keyword, on page 3-13.

See section 3.2.2, Memory Dependencies, on page 3-7.

See Appendix B, Memory Alias Disambiguation, on page B-1.

See section 6.2, Assembly Optimizer Options and Directives, on page 6-4.
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Two Loops are Generated, One Not Software Pipelined

Description

If the trip count is too low, it is illegal to execute the software pipelined version
of the loop.  In this case, the compiler could not guarantee that the minimum
trip count would be high enough to always safely execute the pipelined ver-
sion.  Hence, it generated a non-pipelined version as well. Code is generated,
so that at run-time, the appropriate version of the loop will be executed.

Solution

Check the software pipeline loop information to see what the compiler knows
about the trip count. If you have more precise information, provide it to the com-
piler using one of the following methods:

� Use the MUST_ITERATE pragma to specify loop count information in c
code.

� Use the .trip directive to specify loop count information in linear assembly.

Alternatively, the compiler may be able to determine this information on its own
when you compile the function and callers with –pm and –op2.

For More Information...

See section 3.4.3.3, Communicating Trip Count Information to the Compiler,
on page 3-44.

See section 6.2.5, The .trip Directive, on page 6-8.

See section 3.2.2.3, Performing Program–Level Optimization (–pm Option),
on page 3-14.

Uneven Resources

Description

If the number of resources to do a particular operation is odd, unrolling the loop
is sometimes beneficial. If a loop requires 3 multiplies, then a minimum itera-
tion interval of 2 cycles is required to execute this. If the loop was unrolled, 6
multiplies could be evenly partitioned across the A and B side, having a  mini-
mum ii of 3 cycles, giving improved performance.

Solution

Unroll the loop to make an even number of resources.

For More Information...

See section 6.9, Loop Unrolling (in Assembly), on page 6-94.

See section 3.4.3.4, Loop Unrolling (in C), on page 3-45.
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Larger Outer Loop Overhead in Nested Loop

Description

In cases where the inner loop count of a nested loop is relatively small, the time
to execute the outer loop can start to become a large percentage of the total
execution time. For cases where this significantly degrades overall loop per-
formance, unrolling the inner loop may be desired.

Solution

Unroll the inner loop.

Make one loop with the outer loop instructions conditional on an inner loop
counter

For More Information

See Chapter 6, Loop Unrolling (In C) (In Assembly), on page 6-118.

See section 6.14, Outer Loop Conditionally Executed With Inner Loop, on
page 6-136.

There are Memory Bank Conflicts

Description

In cases where the compiler generates 2 memory accesses in one cycle and
those accesses are either 8 bytes apart on a ’C620x device, 16  bytes apart
on a ’C670x device, or 32 bytes apart on a ’C640x device, AND both accesses
reside within the same memory block, a memory bank stall will occur. To avoid
this degradation, memory bank conflicts can be completely avoided by either
placing the two accesses in different memory blocks or by writing linear as-
sembly and using the .mptr directive to control memory banks.

Solution

Write linear assembly and use the .mptr directive

Link different arrays in separate memory blocks

For More Information

See section 6.2.4, The .mptr Directive, on page 6-5.

See section 6.9, Loop Unrolling (in Assembly), on page 6-94.

See section 3.4.3.4, Loop Unrolling (in C), on page 3-45.

See section 6.12, Memory Banks, on page 6-118
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T Address Paths Are Resource Bound

Description

T address paths defined the number of memory accesses that must be sent
out on the address bus each loop iteration. If these are the resource bound for
the loop, it is often  possible to reduce the number of accesses by performing
word accesses (LDW/STW) for any short accesses being performed.

Solution

Use word accesses for short arrays; declare int * (or use _nassert) and use
mpy intrinsics to  multiply upper and lower halves of registers

Try to employ redundant load elimination technique if possible

Use LDW/STW instructions for accesses to memory

For More Information...

See section 3.4.2, Using Word Accesses for Short Data (C), on page 3-27.

See section 6.11, Redundant Load Elimination, on page 6-110.

See section 6.4, Using Word Access for Short Data (Assembly), on page 6-19.
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Appendix A

Memory Alias Disambiguation

This appendix is a tutorial and practical treatment on the problem of memory
alias disambiguation on the ’C6000. If you write ’C6000 linear assembly or
hand-coded assembly, you will gain direct practical knowledge and advice on
how to use the tools to handle this problem. If you write in C/C++, you will gain
insight into how the compiler handles this problem, as well as some practical
advice.

The keywords to keep in mind are: memory aliases, dependence graphs, in-
struction scheduling
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B.1 Overview

Memory alias disambiguation analyzes whether a dependence, through a
memory location, exists between a given pair of instructions. Dependences
between instructions are then used to determine the fastest legal schedule of
those instructions.

This appendix begins by covering the topic of dependence. Next is a descrip-
tion of how dependences are represented in dependence graphs. These con-
cepts are then extended to cover loops. Then, it addresses how dependence
affects instruction scheduling. Next, the term memory alias disambiguation is
introduced.

The focus then shifts to how the tools, particularly the assembly optimizer, han-
dle memory alias disambiguation. However, if you write hand-coded assem-
bly, you will find some useful concepts in these sections. Several detailed ex-
amples are presented.

Two final sections discuss how the C/C++ compiler handles memory alias dis-
ambiguation, and the differences between memory alias disambiguation and
memory bank conflict detection.

Note that this appendix describes the ’C6000 code generation tools for release
2.10 or greater.
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B.2 Background

B.2.1 Data Dependence Between Instructions

One dictionary definition of dependence is “the state of being determined, in-
fluenced, or controlled by something else”. In the world of software, the objects
being influenced can be modules of code, specific functions, blocks within
functions, individual statements, data structures, variables, etc. Further, the
relationship can be interdependent, for example, two objects can depend on
each other. This appendix refers to only one kind of dependence relationship:
the data dependence between individual assembly language instructions.

At this level, dependence is evaluated between pairs of instructions. Two in-
structions have a dependence when they reference (read or write) the same
machine resource, for example, register, memory location, status bit, and so
forth. So, a dependence is characterized by the following pieces of informa-
tion:

� The first instruction
� The second instruction
� The resource both instructions reference
� The first instruction reference - read or write?
� The second instruction reference - read or write?

This information is summarized in the following table. The entries in the table
are the formal name for that form of dependence.

Table B–1. Dependence Table

Instruction 2 Reference

Read Write

Instruction 1 Reference Read Input Anti-

Write Flow Output

Flow dependence is the most common and intuitive form of dependence. In
this relationship, one instruction writes an output which a following instruction
reads as an input. For example:

I1: ADDK 10,A2 ; writes output to A2

I2: STW A2,*A3 ; reads input from A2

Instruction I1  writes an output in the register A2, and instruction I2  reads A2
as an input.
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Anti-dependence is less common than flow dependence, but it is no less im-
portant. In this relationship, one instruction reads a resource as an input, and
a following instruction writes a result to that same resource. For example:

I3: STW A3,*A4 ; reads A4

I4: ZERO A4 ; writes A4

Instruction I3  reads A4 for a data address, while instruction I4  clears out A4
for some later computation.

Note a key difference from flow dependence: the anti-dependence exists be-
cause of the reuse of the resource, and not because of a transfer of actual data.
So, one easy way to remove an anti-dependence is to choose a different re-
source in the second instruction. In this example, instruction I4  could use the
register A5 instead:

I3: STW A3,*A4 ; reads A4

I4:ZERO A5 ; writes A5 ==> no anti-dependence

Since anti-dependence through a register is so easy to avoid, it is less com-
mon. However, anti-dependence through a memory location is usually not as
easy to rewrite.

Output dependence is also not very common. One example is using a register
to pass a value to a function. You will see a register load followed by a branch
to a function which is known or presumed to overwrite that same register.

I5: LDW *A8,A4 ; load A4

I6: B func ; branch to func ==> overwrites A4

The relationship between these two instructions is an output dependence.

Input dependence is common, but it is usually ignored. One exception is ac-
cessing memory mapped peripherals. In that case, reading a memory location
can trigger a side effect such as incrementing register, or starting a memory
block transfer. You generally want to recognize a dependence between any
instruction which triggers such side effects and any other memory reference.

The term independent is used to describe two instructions which do not refer-
ence any of the same resources. Note the difference between the terms inde-
pendent and anti-dependence.
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B.2.2 Dependence Graphs

Dependence graphs are used to represent the dependences between a set
of instructions.

From the C fragment:

a = b + c;

d = e + f;

Here is hand modified compiler output which illustrates the serial instruction
stream for those statements:

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; 5 | a = b + c;

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

LDW *+DP(_b),B4 ; |5|

LDW *+DP(_c),B7 ; |5|

ADD B7,B4,B4 ; |5|

STW B4,*+DP(_a) ; |5|

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

; 6 | d = e + f;

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––

LDW *+DP(_e),B5 ; |6|

LDW *+DP(_f),B6 ; |6|

ADD B6,B5,B4 ; |6|

STW B4,*+DP(_d) ; |6|
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Here is the dependence graph:

LDW

*+DP(_c)
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B4
*+DP(_a)
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5
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*+DP(_f)
B6

5

ADD

B4

1

STW

B4
*+DP(_d)

The circles are called nodes, and the arrows connecting the circles are called
edges. There is one node for each instruction, and one edge for each depen-
dence. Since instructions can have multiple dependences as both input and
output, nodes in the graph can have multiple edges leading in and out.

With regard to a single edge, the node at the head of the arrow is termed the
“parent” of the “child” node at the tail of the arrow.

The instruction is written immediately over the corresponding node.

For loads and stores, both operands are written inside the node. For other in-
structions, only the result operand is written, because the input operands are
the result operands from the parent nodes.
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The numbers next to the edges indicate how many cycles of pipeline latency
you must wait for that result to be available to the child node. A latency of 0
indicates those instructions can be scheduled in parallel.

A common misconception is to imagine data flowing along the edges. That is
true for the common case of flow dependence (thus the name). But note the
edge from the first STW to the second ADD. That is an anti-dependence on B4.
No data is flowing in this dependence. The dependence is based on the reuse
of register B4. Anti-dependence is shown in the graph with a boldface arrow.
All of the other edges are flow dependences. In flow dependence, the associat-
ed operand is always the last (or only) operand shown in the parent node. For
anti-dependence, the associated operand is the first (or only) operand shown
in the child node.

In other literature, a node may be called a vertex (vertices for plural), and an
edge may be called an arc.

If you are accustomed to the dependence graphs that appear in Chapter 7 of
the ’C6000 Programmer’s Guide, you will notice some differences. The graphs
are called dependency graphs. An edge is called a path. Only one operand is
shown in load/store instructions, and anti-dependence is not addressed.

B.2.3 Data Dependence in Loops

So far, we have only looked at relationships between instructions in a simple
straight-line block of code. Considering dependence between instructions in
a loop requires some extensions to those concepts.

A dependence graph for instructions in a loop looks the same, but there is a
key difference. Each node, instead of representing one instruction, now repre-
sents every instance of that instruction in every loop iteration. The same is true
of the edges.

When considering dependence graphs in straight-line code, you do not have
to worry about the direction of the dependence, because it is always the same:
from an earlier serial instruction to a later one. In loops, however, an instruction
late in the loop can generate a result which is used, in the next loop iteration,
by an instruction earlier in the loop. We say such dependences are carried by
the loop. In that case, the edge in the dependence graph goes the other direc-
tion. Here is a linear assembly code fragment:
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loop:

LDH *xptr++,xi

MPY c1,xi,p0

MPY c2,yi,p1 ; reads yi from prior iteration

ADD p0,p1,sum

SHR sum,15,yi ; writes yi for next iteration

STH yi,*yptr++

; decrement and branch to loop

Here is the dependence graph:
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1
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22
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Consider the instructions which reference yi . Note the flow dependence, car-
ried to the next iteration by the loop, on yi from the SHR to MPY, because the
SHR writes a value to yi  which MPY reads. Also note the anti-dependence, not
carried by the loop, on yi  from the MPY to the SHR, because the MPY must read
yi  before SHR writes to it. Note how the two dependences are in opposite di-
rections.

Nodes which are not loads and have no parents (c1, c2, 15) are either invariant
in the loop or constants. No latency is shown by the edge since the operand
is always available.

This appendix only examines simple loops which contain no other loops. Data
dependence in the presence of nested loops is beyond the scope of this chap-
ter. With regard to the differences introduced by nested loops, the ’C6000 as-
sembly optimizer capability and features, as well as this appendix, work to-
gether to provide you with a conservatively safe solution. That is, the solutions
we provide are generally optimal for simple loops, and safe, though sometimes
less than optimal, for nested loops. The C/C++ compiler, on the other hand,
performs very sophisticated dependence analysis on nested loops.

B.2.4 How Dependence Affects Instruction Scheduling

Instruction scheduling is solving the problem of choosing a schedule for a seri-
al stream of instructions which satisfies two competing constraints: it pre-
serves the computational effect of the serial instructions, for example, the code
still works, and, it has the best performance.

Instruction scheduling algorithms are built around one central concept: while
you do not have to honor the serial instruction order, you do have to honor the
order imposed by the instruction dependences.

We can examine this concept at the C statement level. Take the C fragment
presented earlier and simply swap the order of the statements:

d = e + f;

a = b + c;

It is obvious this will generate the same answer. Why? Because the two state-
ments are independent; they do not reference any of the same variables. Con-
sider this fragment ...

x = y + z; /* #1 */

z = x + 1; /* #2 */

Obviously, if you reorder these statements, you will get a different answer.
Consider the variable x . Statement 1 writes a value to x  which statement 2
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reads; a flow dependence on x . Consider the variable z . Statement 1 reads
a value from z  while statement 2 writes a value to z ; an anti-dependence on
z . Either dependence alone prevents reordering the statements.

It may be somewhat surprising that the forms of dependence, flow or anti- or
output, all have the same effect on the statement order. In every case, the de-
pendence constrains those statements to be in that order.

Input dependence is ignored with regard to scheduling; the order you read
from memory usually does not matter. Instances where you may be concerned
about input dependence include considering the effect on cache behavior, or
accessing memory mapped peripherals.

These same ideas transfer directly to assembly language instructions. Instruc-
tions which are independent can be reordered, instructions which have one or
more dependences cannot be reordered. Further, the latencies associated
with the dependences must be honored.

Since dependences force instruction orderings, it follows that fewer depen-
dences mean fewer constraints on instruction orderings. Put another way, few-
er dependences mean more degrees of freedom in choosing an instruction
schedule. On a chip architecture like the ’C6x, which has many opportunities
for parallelism in combination with a deep pipeline, you can never have too
much freedom in choosing an instruction schedule.

The details of how instruction scheduling algorithms really work is also beyond
the scope of this appendix. But here is the compiler generated schedule for the
original C fragment presented earlier:

LDW .D2T2 *+DP(_b),B4 ; |5|

LDW .D2T2 *+DP(_c),B7 ; |5|

LDW .D2T2 *+DP(_f),B6 ; |6|

LDW .D2T2 *+DP(_e),B5 ; |6|

NOP 3

ADD .L2 B7,B4,B4 ; |5|

STW .D2T2 B4,*+DP(_a) ; |5|

|| ADD .L2 B6,B5,B4 ; |6|

STW .D2T2 B4,*+DP(_d) ; |6|

Note how the instructions from the two C statements are interspersed. The
load statements are scheduled early, to better hide the latency of a load. The
rest of the instructions are scheduled as soon as the latencies of the instruc-
tions they depend on are satisfied. Use the dependence graph from the earlier
section as a guide.
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B.2.5 Memory Alias Disambiguation Defined

This concept has an analogue in computer programs. When there are two (or
more) different ways to reference a memory location, we say there are aliases
to that memory location.

Given this linear assembly fragment:

I7: LDW *A4,A2

... ; other instructions

I8: STW A3,*A6

do A4 and A6 reference the same memory location or not? If they do, they are
memory aliases to that memory location. If they are memory aliases, then
these two instructions have an anti-dependence between them; the read must
occur before the write. In the instruction schedule, this dependence means
those instructions must remain in that order.

On the other hand, if A4 and A6 do not reference the same memory location,
they are not memory aliases. The instructions are independent. In the instruc-
tion schedule, these instructions can safely be placed in any order.

Note that unlike an anti-dependence on registers, there is no way to rewrite
these instructions to remove the anti-dependence.

How can you determine whether *A4  is an alias for *A6  or not? Given the infor-
mation we have here, you cannot. Thus, we call this an ambiguous alias.
Maybe it is alias, maybe it is not.

Memory alias disambiguation, then, is the process of determining whether any
given pair of memory references are aliases to one another. The outcome of
that process is one of three states:

State Means

Not aliases Instructions are independent.

Are aliases Instructions have a dependence between them.

Still ambiguous Tool convention or user information is needed.

If a dependence is found, it imposes an ordering on the instruction schedule.
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B.3 Tools Solution

B.3.1 Overview of the Assembly Optimizer Solution

In a few cases, the assembly optimizer attempts to automatically disambigu-
ate as many memory references as possible. For all remaining memory refer-
ences, the default is to presume they may access the same memory location,
i.e. they are aliases. While that presumption is safe for all input, it is usually too
conservative. So, a command line switch (-mt ) and a function level directive
(.no_mdep ) can reverse that presumption, i.e. presume that any ambiguous
aliases do not access the same memory location. If you have a small number
of possible aliases in your code, you can use an additional directive (.mdep )
to mark those instruction pairs. This is the recommended approach.

B.3.2 Default Presumption is Pessimistic

The default presumption, any ambiguous alias must be an alias, is a worst
case, or pessimistic, assumption. While it is common to have instructions in
your linear assembly which possibly access the same memory location, it rela-
tively rare for that possibility to come true. Still, this pessimistic assumption is
key to giving you the ability to balance correct handling of memory aliases with
good performance.

The pessimistic assumption can have a drastic effect on software pipelining.
Many linear assembly loops fit this general form:

loop:

I11: LDW*p1++,inp1

... ; compute something into outp2

I12: STWoutp2,*p2++

...

; decrement and branch to loop

Under the default assumption, p1  and p2  may reference the same memory
location. This means two more dependence edges are added to the depen-
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dence graph: an anti-dependence edge between I11  and I12 , and a flow de-
pendence edge between I12  and I11.

STW

*p1++

outp2

LDW

1

inp1

*p2++

When a dependence edge is associated with a memory reference, and not a
register operand, you will see a triangle imposed over the edge.

These dependences mean those instructions must remain in that order for ev-
ery loop iteration. Because these are the first and (nearly the) last instructions
in the loop, and they cannot be moved past each other, software pipelining is
all but completely disabled.

However, in many cases, p1  and p2  point to completely different arrays, and
thus never reference the same memory location. So, what is a user to do?



Tools Solution

 B-14

B.3.3 Change the Default Presumption to Optimistic

There are two methods for changing the presumption to the optimistic view
that ambiguous memory aliases never access the same location. You can use
a command line option:

cl6x –mt ...

Or, you can use a function level directive:

.no_mdep

The command line option affects every function in your linear assembly file.
The .no_mdep  directive can only appear within the .(c)proc/.endproc
block of a linear assembly function, and affects only that function.

If you are certain you have no memory aliases in your code, then switching to
the optimistic assumption is all you need to do. This will be a common case.
If you ever do have a memory alias in your code, now you know how to handle
it: get this appendix out again.

Many users will want to switch to the optimistic assumption, except for a small
number aliases they know about in their code. If that is you, the solution is to
switch to the optimistic assumption, and then use the .mdep  directive to mark
those few aliases you have.

B.3.4 Using .mdep to Mark Aliases

Marking an instance of a memory alias is a two step process. First you attach
symbolic names to your memory references in the linear assembly stream:

LDW *p1++{ld1}, inp1 ; name memory reference ”ld1”

...

STW outp2, *p2++{st1} ; name memory reference ”st1”

The names in the “{}” are assembly symbols like any other. You cannot use the
same symbol as a memory reference name and a symbolic register. Then you
note the specific memory dependence:

.mdep ld1,st1

This means whenever ld1  references some memory location X, at some later
time in code execution, st1  may also reference location X. This is equivalent
to adding an edge between these two instructions in the dependence graph.
In terms of the instruction schedule, these instructions must remain in that or-
der. The ld1  reference must always occur before the st1  reference.

Recall how the direction of a given dependence is important when considering
loops. The direction implied by .mdep  is from the first named memory refer-
ence to the second; in this case, from ld1  to st1 . The opposite direction, from
st1  to ld1 , is not implied.
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B.4 Examples of Memory Alias Disambiguation

B.4.1 How .mdep Affects Instruction Scheduling

The following are some complete examples. This example illustrates how an
.mdep  may, or may not, affect the instruction schedule. It also shows how the
direction of a dependence, as indicated by the order of the operands to the
.mdep  directive, affects the instruction schedule.

Full understanding of all the examples presumes an understanding of the gen-
eral concepts of software pipelining. For background information on software
pipelining, see Chapter 7.

This linear assembly function is adapted from the weighted vector sum exam-
ple. A typical call to this function could look like:

.call wvs(a, b, c, m)

Here is the source:

wvs: .cproc aptr, bptr, cptr, m

.reg cntr, ai, bi, pi, pi_scaled, ci

MVK 100,cntr

.no_mdep ; presume no memory aliases

loop: .trip 100

LDH *aptr++,ai

LDH *bptr++,bi

MPY m,ai,pi

SHR pi,15,pi_scaled

ADD pi_scaled,bi,ci

STH ci,*cptr++

[cntr]SUB cntr,1,cntr

[cntr]B loop

.endproc
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Here is the dependence graph (without the decrement and branch instruc-
tions):

m
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*aptr++

5

MPY

pi

ci
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ci
*cptr++

ai
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ADD
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The assembly optimizer generates a 2-cycle loop for this code, which is opti-
mal for this input.

Suppose you know some calls to wvs pass the same array as the b input array
and the c  output array, just to save some space:

.call wvs(a, b, b, m)
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So, every loop iteration reads an element from the b array, and then immedi-
ately writes a result back to that same element. The correct way to model that
is:

wvs: .cproc aptr, bptr, cptr, m

.reg cntr, ai, bi, pi, pi_scaled, ci

MVK100,cntr

.no_mdep ; presume no memory aliases

.mdep b_load,c_store ; except this one

loop: .trip 100

LDH *aptr++ {a_load},ai

LDH *bptr++ {b_load},bi

MPY m,ai,pi

SHR pi,15,pi_scaled

ADD pi_scaled,bi,ci

STH ci,*cptr++ {c_store}

[cntr]SUB cntr,1,cntr

[cntr]B loop

.endproc
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Here is the dependence graph:
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Note the addition of the anti-dependence memory edge between the b_load
and the c_store . The assembly optimizer still generates a 2-cycle loop for
this code; the addition of the .mdep  makes no difference. Why?

Well, there is already a chain of flow dependences, through registers, from
b_load  to c_store , and that chain of dependences imposes an ordering on
the instructions in the chain. So, the instruction ordering constraint imposed
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by the anti-dependence edge is no different than the constraints already im-
posed by the flow dependence chain. Therefore, the instruction schedule
doesn’t change.

Or, you can think about it strictly in terms of the new anti-dependence memory
edge. It means every time b_load  references memory location X, at some lat-
er time in execution, c_store  may also reference location X. This means that
each b_load  must occur before each c_store . More importantly, it also
means each c_store  does not have to occur before each b_load . So, the
b_load  for the next loop iteration can start before the c_store  from the pre-
vious iteration finishes. Here is an illustration of the software pipeline where
each iteration is in a separate column, and instructions which can run in paral-
lel are on the same horizontal line:

Iteration n Iteration n+1

...

LDH b_load ...

... LDH b_load

STH c_store ...

STH c_store

Well, the software pipeline was structured like that before the .mdep . So, no
change.

While it makes for a contrived example, consider what happens if you call wvs
like this:

ADD b,2,c ; c points to b[1]

.call wvs(a, b, c, m)

So, c_store  writes its result to an array element which b_load  reads on the
next loop iteration. Here is the correct way to model that:

.no_mdep ; presume no memory aliases

.mdep c_store,b_load ; except this one

<exactly as before>

Note the .mdep  is the same as the previous example, except the operands are
reversed.



Examples of Memory Alias Disambiguation

 B-20

Here is the dependence graph:
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Now, instead of the anti-dependence memory edge, there is a flow depen-
dence memory edge from c_store  to b_load . Note this dependence is car-
ried by the loop. Now the assembly optimizer generates a 7 cycle loop. Why?

Recall the chain of flow dependences, on registers, from the b_load  to the
c_store . Now that chain is extended, and carried by the loop, to the b_load
for the next iteration. Before you can start that b_load  for the next loop itera-
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tion, you have to wait for the c_store  from the present iteration to finish. Here
is how the software pipeline looks:

Iteration n Iteration n+1

...

LDH b_load

...

STH c_store ...

LDH b_load

...

STH c_store

So, as you can see, the direction, as implied by the operand order, is a very
important characteristic of an .mdep.

B.4.2 Handling Indexed Addressing Mode

Indexed addressing, e.g. *+A4[A5], typically means you are accessing
memory without any clear pattern. How should you handle this case?

Here is an example ...

histogram: .cproc inptr, hptr, len

.reg idx, count

.no_mdep ; no memory aliases

loop: .trip 8

LDHU *inptr++,idx

LDW *+hptr[idx],count

ADD count,1,count

STW count,*+hptr[idx]

[len] SUB len,1,len

[len] B loop

.endproc
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Here is the dependence graph:
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Note the assembly optimizer splits the lifetime of the idx register by adding
the MV instruction; the new variable is shown as idx’ . The lifetime of count
is similarly split at the ADD instruction.

The assembly optimizer generates a 2 cycle loop, but it will not work. Why?
This loop is computing, into the array hptr , a histogram of all the values in the
array inptr . What if the value 10 occurs in the inptr  array two times in a
row? In that case, the location *hptr[10]  is incremented on successive loop
iterations. Look at the dependence graph. Do you see a dependence edge
from the STW to the LDW? No? Well, that is the problem. The LDW for the next
loop iteration has permission to get started without waiting for the STW from the
previous loop iteration, which it does. To fix this situation we add the .mdep:
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histogram: .cproc inptr, hptr, len

.reg idx, count

.no_mdep ; no memory aliases

.mdep h_st, h_ld ; except this one

loop: .trip 8

LDHU *inptr++,idx

LDW *+hptr[idx] {h_ld},count

ADD count,1,count

STW count,*+hptr[idx] {h_st}

[len] SUB len,1,len

[len] B loop

.endproc

Here is the dependence graph:
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Note the flow dependence memory edge, carried by the loop, from the STW to
the LDW. Now the assembly optimizer generates a 7 cycle loop. Much slower,
but it works.
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Do you need the .mdep  in the other direction, from the h_ld  to the h_st ? If
you simply want the code to run, and you do not care why, then the answer is
no. Because of the chain of flow dependences on registers from h_ld  to h_st ,
this ...

.no_mdep ; no memory aliases

.mdep h_st, h_ld ; except this one

.mdep h_ld, h_st ; and this one

does not change the instruction schedule. But the dependence actually does
exist, so it is advisable to add this .mdep  because it makes the code self-docu-
menting.

In the face of indexed addressing, you may be tempted to just rely on the de-
fault pessimistic assumption. Be careful. In this case, that will hand you a
13-cycle loop. Why? Because under the pessimistic assumption a depen-
dence is recognized from the STW (at the bottom of the loop) to the LDHU (at
the top of the loop). That means the load at the top of iteration n+1 cannot start
until the store at the end of iteration n is finished.

B.4.3 Peripherals Access Example

Recall that you cannot override any automatic disambiguation performed by
the assembly optimizer. If it can determine that two memory references (must/
must not) access the same memory location it (will/will not) recognize a depen-
dence between the associated instructions. This is true despite any command
line options or .mdep  directives which may be in effect. This means there is
no way to guarantee the assembly optimizer will use a particular pattern of ac-
cess to memory. In general code, this is preferable behavior. But it can be an
issue when you consider code which accesses memory mapped peripherals.
Here is an example:

; base of multi-channel buffered serial port 0

MCBSP0_BASE .set 0x018C0000

mcbsp0_dxr: .cproc

MVKL MCBSP0_BASE,B4 ; load base of McBSP0 regs

MVKH MCBSP0_BASE,B4

...

STW B5,*+B4(0x10) ; init XCR for transfer

STW B6,*+B4(0x4) ; transfer word through DXR

...

.endproc
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It is clear that the two STW memory references are not accessing the same
memory location; they are using the same base register with different offsets.
So, even if you use:

.mdep wrt_xcr,wrt_dxr

STW B5,*+B4(0x10) {wrt_xcr}

STW B6,*+B4(0x4) {wrt_dxr}

the assembly optimizer may still reorder the writes. In general code, this is fine,
and often an improvement. But when accessing peripherals like a serial port,
or whenever writing to a memory location can trigger a side effect, reordering
the memory references is wrong.

Presently, there are two ways to solve this problem. You can write the code in
C, being careful to use the keyword “volatile” for any memory reference which
has a side effect. Or, you can bypass the assembly optimizer by writing these
routines in hand-coded assembly.
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B.5 C/C++ Compiler and Alias Disambiguation

The C/C++ compiler provides several methods, both command line options
and in the source, for addressing the problem of memory alias disambiguation.
Having read this appendix, you should now have a much better understanding
of the issue. This section will briefly review each of these methods. For all the
details, consult either this book or the TMS320C6000 Opimizing C/C++ Com-
piler User’s Guide.

The compiler does a much better job of alias disambiguation than the assem-
bly optimizer. C source provides much more information to work with. So, the
default presumption on aliases which cannot be disambiguated is the pessi-
mistic one: they are aliases.

Still, there are a few very esoteric cases of memory aliases which the compiler
presumes do not occur. If your code violates those presumptions use:

cl6x -ma

On rare occasions, you may need it.

The command line option:

cl6x -mt

means something different to the compiler than it does to the assembly opti-
mizer. As presented already, this option reverses the assembly optimizer’s
pessimistic assumption that memory references it cannot disambiguate must
be aliases. To the compiler, this same option means several specific instances
of memory aliases do not occur in your C/C++ code.

The command line options:

cl6x –pm –o3

have several effects, of which improved alias disambiguation is only one.
These options work together to provide program level optimization. The –pm
option combines all of your source files into one intermediate file, and –o3  car-
ries out the program level optimization on that intermediate file. Seeing all the
functions at once yields optimization opportunities which generally do not oc-
cur otherwise. If the compiler can see all the calls to this function:

void foo(int *p1, int *p2)

it can easily determine that the same array is never passed in for p1 and p2 ,
and therefore p1  and p2  references are not aliases.
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Correct use of the const and restrict  keywords helps the alias disambi-
guation problem. The const  keyword tells the compiler that the data object
will not be modified, even by an alias. So, any const  qualified memory read
cannot possibly be an alias to a memory write. If an alias does modify a const
object, that is a user bug. The restrict keyword tells the compiler that
within the scope of a particular pointer, only the object pointed to can be ac-
cessed by that pointer.
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B.6 Memory Alias Disambiguation versus Memory Bank Conflict Detection

If a ’C6000 execute packet (a set of instructions which execute in parallel) in-
cludes two references to memory, and both of those references are to the
same memory bank, because each bank is single-ported memory, the pipeline
stalls for one cycle while the second memory word is accessed. This is called
a bank conflict, and it is obviously worth avoiding. The assembly optimizer pro-
vides a directive called .mptr  for the purpose of solving this problem. See the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide for all the details.

It is easy to confuse the topic of memory alias disambiguation with memory
bank conflict detection. The terms sound similar. And they are both concerned
with how memory references affect the instruction schedule. But there are
some striking differences ...

Alias Disambiguation Bank Conflict Detection

The problem is ... Whether two memory references access
exactly the same location

Whether two memory references access
the same memory bank

The answer affects ... The ordering constraints imposed on the
instruction schedule

Whether to schedule a pair of memory
references in parallel

Get it wrong and ... Your code does not work The execute packet takes 1 cycle longer

Occurrences of ... Memory aliases are relatively rare Potential memory bank conflicts are
common

You have to solve the problem of memory alias disambiguation before you can
consider the problem of memory bank conflict detection. One of the presump-
tions of memory bank conflict detection is that the two memory references can
be scheduled in parallel. That is true only if you have already determined the
instructions are independent; they are not aliases to one another.

In your linear assembly, it is best to simply keep these problems, and their solu-
tions, entirely separate. Enter your .mdep  directives without any regard to
your .mptr  directives, and vice versa.
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B.7 Summary

� Dependence is a relationship between two instructions which read or write
the same machine resource.

� Dependence graphs represent the dependence between instructions.
Nodes (circles) are instructions. Edges (arrows) are dependences. Data
often flows along edges, but not always.

� In loops, nodes represent every instance of that instruction in every loop
iteration, and dependence direction is important.

� Dependences force an ordering on the instruction schedule.

� Generally, the fewer the dependences, the better the schedule.

� Multiple references to the same memory location are called aliases.

� Aliases imply a dependence between the associated instructions.

� Memory alias disambiguation is the process of determining whether a pair
of references are aliases, for example, whether a dependence is recog-
nized between the instructions.

� The assembly optimizer automatically disambiguates a few references,
then uses command line options and directives to disambiguate the re-
maining references.

� The default presumption for remaining aliases is pessimistic; they are
aliases.

� The assembly optimizer command line option:

cl6x –mt ...

reverses the default presumption to optimistic; they are not aliases. It applies
to all functions in the file.

� The function level directive ...

.no_mdep

also changes the presumption to optimistic, but applies only to the function
which contains it.

� To mark a specific memory dependence, first annotate memory refer-
ences ...

LDW*p1++{ld1}, inp1 ; name memory reference ”ld1”

...



Summary

 B-30

STWoutp2, *p2++{st1} ; name memory reference ”st1”

Then note the specific dependence:

.mdep ld1,st1

� You cannot force the assembly optimizer to recognize a dependence be-
tween instructions, which can be an issue when accessing memory
mapped peripherals.

� The C/C++ compiler offers the user several methods for influencing the
handling of memory aliases

� Do not confuse memory alias disambiguation with memory bank conflict
detection. Solve the problems separately.
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_add2 intrinsic, 3-27

aliasing, 3-9

allocating resources
conflicts, 6-65
dot product, 6-23
if-then-else, 6-90, 6-97
IIR filter, 6-82
in writing parallel code, 6-11
live-too-long resolution, 6-106
weighted vector sum, 6-62

AND instruction, mask for, 6-74

arrays, controlling alignment, 6-120

assembler directives, 5-4

assembly code
comments in, 5-9
conditions in, 5-3
directives in, 5-4
dot product, fixed-point

nonparallel, 6-14
parallel, 6-15

final
dot product, fixed-point, 6-26, 6-46, 6-52, 6-55
dot product, floating-point, 6-48, 6-53, 6-56
FIR filter, 6-120, 6-129, 6-133–6-136,

6-147–6-150
FIR filter with redundant load elimination,

6-116
if-then-else, 6-91, 6-92, 6-99
IIR filter, 6-85
live-too-long, with move instructions, 6-108
weighted vector sum, 6-75

functional units in, 5-5
instructions in, 5-4
labels in, 5-2

linear
dot product, fixed-point, 6-10, 6-20, 6-24,

6-30, 6-39
dot product, floating-point, 6-21, 6-25, 6-31,

6-40
FIR filter, 6-112, 6-114, 6-123, 6-125
FIR filter, outer loop, 6-138
FIR filter, outer loop conditionally executed

with inner loop, 6-141, 6-143
FIR filter, unrolled, 6-137
if-then-else, 6-87, 6-90, 6-95, 6-98
IIR filter, 6-78, 6-82
live-too-long, 6-102, 6-107
weighted vector sum, 6-58, 6-60, 6-62

mnemonics in, 5-4
operands in, 5-8
optimizing (phase 3 of flow), description, 6-2
parallel bars in, 5-2
structure of, 5-1–5-11
writing parallel code, 6-4, 6-9

assembly optimizer
for dot product, 6-41
tutorial, 2-25
using to create optimized loops, 6-39

B
big-endian mode, and MPY operation, 6-21
branch target, for software-pipelined dot product,

6-41, 6-43
branching to create if-then-else, 6-86

C
C code

analyzing performance of, 3-3
basic vector sum, 3-8
dot product, 3-29

fixed-point, 6-9, 6-19
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floating-point, 6-20
FIR filter, 3-30, 3-47, 6-110, 6-122

inner loop completely unrolled, 3-48
optimized form, 3-31
unrolled, 6-131, 6-136, 6-139
with redundant load elimination, 6-111

if-then-else, 6-86, 6-94
IIR filter, 6-77
live-too-long, 6-101
refining (phase 2 of flow), in flow diagram, 1-3
saturated add, 3-18
trip counters, 3-42
vector sum

with const keywords, 3-10
with const keywords, _nassert, word reads,

3-27, 3-28
with const keywords, _nassert, word reads,

unrolled, 3-46
with three memory operations, 3-45
word-aligned, 3-46

weighted vector sum, 6-58
unrolled version, 6-59

writing, 3-2

char data type, 3-2

child node, 6-11

cl6x command, 3-4

clock ( ) function, 3-3

code development flow diagram, 1-3
phase 1: develop C code, 1-3
phase 2: refine C code, 1-3
phase 3: write linear assembly, 1-3

code development steps, 1-6

code documentation, 5-9

comments in assembly code, 5-9

compiler options
–o3, 3-44
–pm, 3-44

conditional execution of outer loop with inner loop,
6-138

conditional instructions to execute if-then-else, 6-87

conditional SUB instruction, 6-29

conditions in assembly code, 5-3

const keyword, 3-7, 3-9
in vector sum, 3-27

constant operands, 5-8

.cproc directive, 2-25

CPU elements, 1-2

D
.D functional units, 5-7
data types, 3-2
dependency graph

dot product, fixed-point, 6-12
dot product, fixed-point

parallel execution, 6-15
with LDW, 6-22, 6-24, 6-30

dot product, floating-point, with LDW, 6-23, 6-25,
6-31

drawing, 6-11
steps in, 6-12

FIR filter
with arrays aligned on same loop cycle, 6-121
with no memory hits, 6-124
with redundant load elimination, 6-113

if-then-else, 6-88, 6-96
IIR filter, 6-79, 6-81
live-too-long code, 6-103, 6-106
showing resource conflict, 6-65

resolved, 6-68
vector sum, 3-8

weighted, 6-61, 6-65, 6-68, 6-70
with const keywords, 3-10

weighted vector sum, 6-68
destination operand, 5-8
dot product

C code, 6-9
fixed-point, 6-9
translated to linear assembly, fixed-point, 6-10
with intrinsics, 3-29

dependency graph of basic, 6-12
fixed-point

assembly code with LDW before software pi-
pelining, 6-26

assembly code with no extraneous loads, 6-46
assembly code with no prolog or epilog, 6-52
assembly code with smallest code size, 6-55
assembly code, fully pipelined, 6-42
assembly code, nonparallel, 6-14
C code with loop unrolling, 6-19
dependency graph of parallel assembly code,

6-15
dependency graph with LDW, 6-24
fully pipelined, 6-41
linear assembly for full code, 6-39
linear assembly for inner loop with conditional

SUB instruction, 6-30
linear assembly for inner loop with LDW, 6-20
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linear assembly for inner loop with LDW and
allocated resources, 6-24

nonparallel assembly code, 6-14
parallel assembly code, 6-15

floating-point
assembly code with LDW before software pi-

pelining, 6-27
assembly code with no extraneous loads, 6-48
assembly code with no prolog or epilog, 6-53
assembly code with smallest code size, 6-56
assembly code, fully pipelined, 6-43
C code with loop unrolling, 6-20
linear assembly for inner loop with conditional

SUB instruction, 6-31
fully pipelined, 6-43
linear assembly for full code, 6-40
linear assembly for inner loop with LDW, 6-21
linear assembly for inner loop with LDW and

allocated resources, 6-25
word accesses in, 3-29

double data type, 3-2

E
.endproc directive, 2-25

epilog, 3-41

execute packet, 6-40

execution cycles, reducing number of, 6-9

extraneous instructions, removing, 6-45
SUB instruction, 6-55

F
feedback, from compiler or assembly optimizer, 1-8

FIR filter
C code, 3-30, 6-110

optimized form, 3-31
unrolled, 6-136, 6-139
with inner loop unrolled, 6-131
with redundant load elimination, 6-111

final assembly, 6-147
for inner loop, 6-120
with redundant load elimination, 6-116
with redundant load elimination, no memory

hits, 6-129
with redundant load elimination, no memory

hits, outer loop software-pipelined, 6-133

linear assembly
for inner loop, 6-112
for outer loop, 6-138
for unrolled inner loop, 6-123
for unrolled inner loop with .mptr directive,

6-125
with inner loop unrolled, 6-137
with outer loop conditionally executed with in-

ner loop, 6-141, 6-143
software pipelining the outer loop, 6-131
using word access in, 3-30
with inner loop unrolled, 6-122

fixed-point, dot product
linear assembly for inner loop with LDW, 6-20
linear assembly for inner loop with LDW and allo-

cated resources, 6-24
float data type, 3-2
floating-point, dot product

dependency graph with LDW, 6-25
linear assembly for inner loop with LDDW, 6-21
linear assembly for inner loop with LDDW with

allocated resources, 6-25
flow diagram, code development, 1-3
functional units

fixed-point operations, 5-6
in assembly code, 5-7
list of, 5-6
operations performed on, 5-6
reassigning for parallel execution, 6-14, 6-16

functions
clock ( ), 3-3
printf ( ), 3-3

I
if-then-else

branching versus conditional instructions, 6-86
C code, 6-86, 6-94
final assembly, 6-91, 6-92, 6-99
linear assembly, 6-87, 6-90, 6-95, 6-98

IIR filter, C code, 6-77
in-flight value, 7-3
inserting moves, 6-105
instructions, placement in assembly code, 5-4
int data type, 3-2
interrupt subroutines, 7-11–7-14

hand-coded assembly allowing nested interrupts,
7-13

nested interrupts, 7-12
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with hand-coded assembly, 7-12
with the C compiler, 7-11

interrupts
overview, 7-2
single assignment versus multiple assignment,

7-3–7-4

intrinsics
_add2 ( ), 3-27
_mpy ( ), 3-29
_mpyh ( ), 3-29
_mpyhl ( ), 3-27
_mpylh ( ), 3-27
described, 3-18
in saturated add, 3-18
summary table, 3-19–3-21

iteration interval, defined, 6-32

K
–k compiler option, 3-6

kernel, loop, 3-11, 3-41

L
.L functional units, 5-6

labels in assembly code, 5-2
linear, optimizing (phase 3 of flow), in flow diagram,

1-3

linear assembly, 2-25
code

dot product, fixed-point, 6-10
dot product, fixed-point, 6-14, 6-20, 6-24,

6-30, 6-39
dot product, floating-point, 6-21, 6-25, 6-31,

6-40
FIR filter, 6-112, 6-114, 6-123, 6-125
FIR filter with outer loop conditionally execut-

ed with inner loop, 6-141, 6-143
FIR filter, outer loop, 6-138
FIR filter, unrolled, 6-137
if-then-else, 6-90, 6-98
live-too-long, 6-107
weighted vector sum, 6-62

resource allocation
conflicts, 6-65
dot product, 6-23
if-then-else, 6-90, 6-97
IIR filter, 6-82

in writing parallel code, 6-11
live-too-long resolution, 6-106
weighted vector sum, 6-62

little-endian mode, and MPY operation, 6-21
live-too-long

code, 6-67
C code, 6-101
inserting move (MV) instructions, 6-105
unrolling the loop, 6-105

issues, 6-101
and software pipelining, 3-50
created by split-join paths, 6-104

load
doubleword (LDDW) instruction, 6-19
word (LDW) instruction, 6-19

long data type, 3-2
loop

carry path, described, 6-77
counter, handling odd-numbered, 3-28
unrolling

dot product, 6-19
for simple loop structure, 3-47
if-then-else code, 6-94
in FIR filter, 6-122, 6-125, 6-131, 6-136, 6-138
in live-too-long solution, 6-105
in vector sum, 3-45

M
memory bank scheme, interleaved, 6-118–6-120
memory dependency. See dependency
minimum iteration interval, determining, 6-34

for FIR code, 6-114, 6-128, 6-146
for if-then-else code, 6-89, 6-97
for IIR code, 6-80
for live-too-long code, 6-104
for weighted vector sum, 6-59, 6-60

mnemonic (instruction), 5-4
modulo iteration interval table

dot product, fixed-point
after software pipelining, 6-35
before software pipelining, 6-32

dot product, floating-point
after software pipelining, 6-36
before software pipelining, 6-33

IIR filter, 4-cycle loop, 6-83
weighted vector sum

2-cycle loop, 6-64, 6-69, 6-72
with SHR instructions, 6-66
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modulo-scheduling technique, multicycle loops, 6-58

move (MV) instruction, 6-105

_mpy intrinsic, 3-29

_mpyh ( ) intrinsic, 3-29

_mpyhl intrinsic, 3-27

_mpylh intrinsic, 3-27

multicycle instruction, staggered accumulation, 6-37

multiple assignment, code example, 7-3

MUST_ITERATE, 3-27

N
_nassert intrinsic, 3-23

node, 6-11

O
–o compiler option, 3-5, 3-6, 3-41, 3-44

operands
placement in assembly code, 5-8
types of, 5-8

optimizing assembly code, introduction, 6-2

outer loop conditionally executed with inner loop,
6-136

OUTLOOP, 6-115, 6-128

P
parallel bars, in assembly code, 5-2

parent instruction, 6-11

parent node, 6-11

path in dependency graph, 6-11

performance analysis
of C code, 3-3
of dot product examples, 6-18, 6-28, 6-57
of FIR filter code, 6-128, 6-135, 6-149
of if-then-else code, 6-93, 6-100

pipeline in ’C6x, 1-2

–pm compiler option, 3-5, 3-6, 3-7, 3-14, 3-44

pointer operands, 5-8

pragma, MUST_ITERATE, 3-44

preparation for tutorial, 2-1

priming the loop, described, 6-51

printf ( ) function, 3-3

program-level optimization, 3-7
prolog, 3-41, 6-51, 6-53

pseudo-code, for single-cycle accumulator with
ADDSP, 6-37

R
redundant

load elimination, 6-110
loops, 3-43

.reg directive, 2-25, 6-20, 6-21

register
allocation, 6-127
operands, 5-8

resource
conflicts

described, 6-65
live-too-long issues, 6-67, 6-101

table
FIR filter code, 6-114, 6-128, 6-146
if-then-else code, 6-89, 6-97
IIR filter code, 6-80
live-too-long code, 6-104

S
.S functional units, 5-6

.sa extension, 2-25
_sadd intrinsic, 3-18, 3-24
scheduling table. See modulo iteration interval table

shell program (cl6x), 3-4
short

arrays, 3-27
data type, 3-2, 3-27

single assignment, code example, 7-4

software pipeline, 3-41, 3-47
accumulation, staggered results due to 3-cycle

delay, 6-38
described, 6-29
when not used, 3-50

software-pipelined schedule, creating, 6-34
source operands, 5-8

split-join path, 6-101, 6-102, 6-104
stand-alone simulator (load6x), 3-3
symbolic names, for data and pointers, 6-20, 6-21
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T
techniques

for priming the loop, 6-51
for refining C code, 3-18
for removing extra instructions, 6-45, 6-55
using intrinsics, 3-18
word access for short data, 3-27

TMS320C6x pipeline, 1-2
translating C code to ’C6x instructions

dot product
fixed-point, unrolled, 6-20
floating-point, unrolled, 6-21

IIR filter, 6-78
with reduced loop carry path, 6-82

weighted vector sum, 6-58
unrolled inner loop, 6-60

translating C code to linear assembly, dot product,
fixed-point, 6-10

trip count, 2-25
communicating information to the compiler, 3-44

.trip directive, 2-25

V
vector sum function

See also weighted vector sum
C code, 3-8

with const keyword, 3-10

with const keywords, _nassert, word reads,
3-27

with const keywords, _nassert, word reads,
and loop unrolling, 3-46

with const keywords,_nassert, and word reads
(generic), 3-28

with three memory operations, 3-45
word-aligned, 3-46

compiler output (original assembly code), 3-11
dependency graph, 3-8, 3-10
handling odd-numbered loop counter with, 3-28
handling short-aligned data with, 3-28
rewriting to use word accesses, 3-27

VelociTI, 1-2
very long instruction word (VLIW), 1-2

W
weighted vector sum

C code, 6-58
unrolled version, 6-59

final assembly, 6-75
linear assembly, 6-73

for inner loop, 6-58
with resources allocated, 6-62

translating C code to assembly instructions, 6-60
word access

in dot product, 3-29
in FIR filter, 3-30
using for short data, 3-27–3-40
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